Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ CH⊥ABCH⊥AB
Tứ giác ABCHABCH có 3 góc vuông
⇒⇒ Tứ giác ABCHABCH là hình chữ nhật
Lại có AB=BC(gt)AB=BC(gt)
⇒⇒ Tứ giác ABCHABCH là hình vuông
⇒ˆBCH=90o⇒BCH^=90o
⇒BC=AH=CH⇒BC=AH=CH
Ta có:
BC=12AD(gt)BC=12AD(gt)
⇒AD=2⋅BC⇒AD=2⋅BC
AD=AH+HDAD=AH+HD
AD=BC+HDAD=BC+HD
2⋅BC=BC+HD2⋅BC=BC+HD
⇒HD=BC⇒HD=BC
Ta có CH=BCCH=BC và HD=BCHD=BC nên CH=HDCH=HD
Xét ΔCHDΔCHD có:
CH=HDCH=HD
ˆCHD=90oCHD^=90o(kề bù với ˆCHACHA^)
⇒ΔCHD⇒ΔCHD vuông cân tại HH
⇒ˆHCD=ˆD=45o⇒HCD^=D^=45o
ˆBDC=ˆBCH+ˆHCD=90o+45o=135oBDC^=BCH^+HCD^=90o+45o=135o
Vậy ˆA=90o,ˆB=90o,ˆC=135o,ˆD=45oA^=90o,B^=90o,C^=135o,D^=45o
b)
Xét ΔCHAΔCHA có:
CH=HACH=HA
ˆCHD=90oCHD^=90o
⇒ΔCHA⇒ΔCHA vuông cân tại HH
⇒ˆHCA=ˆA=45o⇒HCA^=A^=45o
ˆACD=ˆACH+ˆHCD=45o+45o=90oACD^=ACH^+HCD^=45o+45o=90o
⇒AC⊥CD⇒AC⊥CD
Vậy AC⊥CDAC⊥CD
c)
BC=AB=3cm(gt)BC=AB=3cm(gt)
AD=2⋅BC=2⋅3cm=6cmAD=2⋅BC=2⋅3cm=6cm
HD=BC=3cmHD=BC=3cm
Xét ΔCHDΔCHD:
Áp dụng định lý Pi-ta-go ta có:
HD2+BC2=CD232+32=CD2CD2=18CD=√18(cm)HD2+BC2=CD232+32=CD2CD2=18CD=18(cm)
Chu vi hình thang là:
3+3+√18+6=12+√18(cm)
tick mình nha
a) Gọi \(\widehat{ADB}=\widehat{D_1;}\widehat{CDB}=\widehat{D_2}\)
Xét Δ vuông BDC ta có :
\(\)\(\widehat{D_2}+\widehat{C}=90^o\)
mà \(\widehat{D_2}=\dfrac{\widehat{D}}{2}\) (DB là phân giác \(\widehat{ADC}\))
\(\widehat{C}=\widehat{D}\) (ABCD là hình thang cân)
\(\Rightarrow\dfrac{\widehat{D}}{2}+\widehat{D}=90^o\)
\(\Rightarrow\dfrac{\widehat{3D}}{2}=90^o\Rightarrow\widehat{D}=60^o\Rightarrow\widehat{C}=\widehat{D}=60^o\)
Ta lại có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
mà \(\left\{{}\begin{matrix}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{matrix}\right.\) (ABCD là hình thang cân)
\(\Rightarrow2\widehat{A}+2\widehat{C}=360^o\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2\widehat{C}}{2}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2.60^o}{2}=120^o\)
b) \(BC=AD=6\left(cm\right)\) (ABCD là hình thang cân)
Xét Δ vuông BDC ta có :
\(Cos60^o=\dfrac{BC}{DC}=\dfrac{1}{2}\)
\(\Rightarrow DC=2BC=2.6=12\left(cm\right)\)
\(DC^2=BD^2+BC^2\left(Pitago\right)\)
\(\Rightarrow BD^2=DC^2-BC^2=12^2-6^2=144-36=108=3.36\)
\(\Rightarrow BD=6\sqrt[]{3}\left(cm\right)\)
Kẻ đường cao AH và BE vuông góc DC tại H và E
Ta có : \(BE.CD=BD.BC\Rightarrow BE=\dfrac{CD}{BD.BC}=\dfrac{12}{6.6\sqrt[]{3}}=\dfrac{1}{3\sqrt[]{3}}\left(cm\right)\)
Xét Δ BEC ta có :
\(BC^2=BE^2+EC^2\Rightarrow EC^2=BC^2-BE^2=36-\dfrac{1}{27}\)
\(\Rightarrow EC^2=\dfrac{971}{27}\Rightarrow EC=\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)
ABHE là hình chữ nhật (AB \(//\) HE;AH \(//\) BE vì cùng vuông với CD; Góc H=90o )
\(\Rightarrow AB=HE=CD-2EC=12-\dfrac{2}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\) (tính chất hình thang cân)
Chu vi hình thang cân ABCD :
\(2BC+DC+AB=2.6+12+12-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}=36-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)
a/
\(\widehat{ADB}=\widehat{CDB}=\dfrac{\widehat{ADC}}{2}\) (gt)
Mà \(\widehat{ADC}=\widehat{BCD}\) (góc ở đáy hình thang cân)
\(\Rightarrow\widehat{CDB}=\dfrac{\widehat{BCD}}{2}\)
Xét tg vuông BCD có
\(\widehat{CDB}+\widehat{BCD}=90^o\Rightarrow\dfrac{\widehat{BCD}}{2}+\widehat{BCD}=90^o\Rightarrow\widehat{BCD}=60^o\)
\(\Rightarrow\widehat{CDB}=\dfrac{\widehat{BCD}}{2}=\dfrac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{ADC}=\widehat{BCD}=60^o\)
Ta có
\(\widehat{DAB}=\widehat{ABC}\) (góc ở đáy hình thang cân)
\(\widehat{DAB}=180^o-\widehat{ADC}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{DAB}=\widehat{ABC}=120^o\)
b/ Từ B dựng đường thẳng // AD cắt CD tại E ta có
AB // CD => AD//DE mà BE//AD
=> ABED là hình bình hành
=> BE = AD mà AD = BC (cạnh bên hình thang cân)
=> BE = AD = BC = 6 cm
Xét tg BCE có
BE = BC => tg BCE cân tại B
\(\Rightarrow\widehat{BEC}=\widehat{BCD}=60^o\Rightarrow\widehat{CBE}=60^o\) => tg BCE là tg giác đều
=> BE = CE = BC = 6 cm
Xét tg vuông BCD có
\(\widehat{CDB}=30^o\) (cmt) => \(BC=\dfrac{CD}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)
\(\Rightarrow CD=2BC=2.6=12cm\)
\(\Rightarrow DE=CD-CE=12-6=6cm\)
Mà DE = AB = 6 cm (cạnh đối hbh ABED)
\(\Rightarrow C_{ABCD}=AB+BC+CD+AD=6+6+12+6=30cm\)
Ta có DB là tia pgiac của \(\widehat{ADC}\)
Mà \(\widehat{ADC}=\widehat{BCD}\) do 2 góc là góc đáy của hình thang
=>\(\widehat{BDC}=\widehat{DCB}:2\)
Xét ∆ vuông BDC có:
\(\widehat{BDC}+\widehat{DCB}=90^o=>\widehat{DCB}:2+\widehat{DCB}=90^o\)
\(\Rightarrow\widehat{DCB}=60^o\\ \Rightarrow\widehat{BDC}=60^o:2=30^O\)
Ta có: \(\widehat{BAD}=\widehat{ABC}\) (t/chất hthang)
\(\Rightarrow\widehat{BAD}=180^o-\widehat{BDC}=180^o-60^o=120^o\)
\(\Rightarrow\widehat{BAD}=\widehat{ABC}=120^o\)
b. Xét tam giác CHA có :
CH = AH
góc CHD = 90°
=> tam giác CHA vuông cân tại H
=> góc HCA = góc A = 45°
Ta có : góc ACD = góc ACH + góc HCD = 45° + 45° = 90°
=>AC vuông góc CD
c. Ta có : BC = AB = 3cm
AD = 2BC = 2.3 cm = 6 cm
HD = BC = 3 cm
Áp dụng định lí Pytago vào tam giác CHD vuông tại H ta có :
HD^2 + BC^2 = CD^2
=> 3^2 + 3^2 = CD^2
=> CD^2 = 18 => CD = căn 18 (cm)
Chu vi hình thang là :
3 + 3 + căn 18 + 6 = 12 + căn 18 ( cm )