Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tính dễ
b. tam giác ABO đồng dạng tam giác CDO => OB/OD = OA/OC
Tính được OA,OB,OD => OC => tính được AC
c. Sabcd = S tam giác ABD + S tam giác BDC
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
a) Ta có hình thang vuông ABCD, nên ta có: AB^2 + BC^2 = AC^2 AD^2 + DC^2 = AC^2
Vì AB = 15cm, AD = 20cm và ABCD là hình thang vuông, nên ta có: 15^2 + BC^2 = AC^2 20^2 + DC^2 = AC^2
Vì 2 đường chéo AC và BD vuông góc tại O, nên ta có: OB^2 + BC^2 = OC^2 OD^2 + DC^2 = OC^2
Vì ABCD là hình thang vuông, nên ta có: OB^2 + BC^2 = OD^2 + DC^2
Từ hai phương trình trên, ta có thể suy ra OB = OD.
b) Ta có thể tính đường chéo AC bằng cách sử dụng định lí Pythagoras trên tam giác vuông AOC: AC^2 = AO^2 + OC^2
Vì OB = OD, nên ta có AO = OD = OB.
Vậy, ta có: AC^2 = OB^2 + OC^2
c) Để tính diện tích SABCD, ta có thể sử dụng công thức
a: ΔABD vuông tại A
=>BD^2=AB^2+AD^2=625
=>BD=25cm
ΔABD vuông tại A có AO là đường cao
nên BO*BD=BA^2 và DO*DB=DA^2 và AO^2=OD*OB
=>BO=15^2/25=9cm; DO=20^2/25=16cm; AO^2=9*16=144
=>AO=12cm
b: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có
góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD
=>9/16=12/OC
=>OC=16*12/9=16*4/3=64/3cm
AC=12+64/3=100/3cm
c: \(S_{ABCD}=\dfrac{1}{2}\cdot AC\cdot BD=\dfrac{1}{2}\cdot\dfrac{100}{3}\cdot25=\dfrac{50}{3}\cdot25=\dfrac{1250}{3}\left(cm^2\right)\)