K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

-Sửa đề: F là giao của AC và BD.

EF cắt AB, CD lần lượt tại H,K.

\(\dfrac{AH}{BK}=\dfrac{AE}{BE}=\dfrac{AB}{DC}=\dfrac{BE}{CE}=\dfrac{BH}{CK}\)

\(\Rightarrow\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{AB}{DC}\left(1\right)\)

\(\dfrac{AH}{CK}=\dfrac{AF}{CF}=\dfrac{AB}{CD}=\dfrac{BF}{DF}=\dfrac{BH}{DK}\)

\(\Rightarrow\dfrac{AH}{CK}=\dfrac{BH}{DK}=\dfrac{AB}{CD}\left(2\right)\)

-Từ (1) và (2) \(\Rightarrow\dfrac{AH}{CK}=\dfrac{AH}{BK}=\dfrac{BH}{CK}=\dfrac{BH}{DK}\)

\(\Rightarrow AH=BH;CK=DK\)

\(\Rightarrow\)H là trung điểm AB, K là trung điểm CD.

27 tháng 1 2016

http://olm.vn/hoi-dap/question/403903.html

27 tháng 1 2016

http://olm.vn/hoi-dap/tag/Toan-lop-8.html

a: Xét ΔEAB và ΔEMD có

góc EAB=góc EMD

góc AEB=góc MED

=>ΔEAB đồng dạng vơi ΔEMD

=>EM/EA=AB/MD=AB/MC

Xet ΔFAB và ΔFCM có

góc FAB=góc FCM

góc AFB=góc CFM

Do đó: ΔFAB đồng dạng với ΔFCM

=>FB/FM=AB/CM

=>FM/FB=CM/AB=DM/AB=ME/EA

=>EF//AB

b: Xet ΔBMC có FN//MC

nên FN/MC=BN/BC

=>FN/MD=AH/AD

Xét ΔADM có HE//DM

nên HE/DM=AH/AD

Xét ΔBDC có EN//DC

nên EN/DC=BN/BC=AH/AD

=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD

=>(EF+FN)/2=HE=FN

=>EF+FN=2FN

=>FN=EF=HE

19 tháng 3 2020

I A B D C E F K

Gọi I là trung điểm của AB.

Giả sử đường thẳng IE cắt CD tại K1 

Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD

Giả sử đường thẳng IF cắt CD tại K2

Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD 

do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau

Vậy ta có đpcm

19 tháng 3 2020

Bạn ơi gọi luôn I là trung điểm AB thì sai r

12 tháng 12 2023

a: Xét ΔEAB và ΔECM có

\(\widehat{EAB}=\widehat{ECM}\)(hai góc so le trong, AB//CM)

\(\widehat{AEB}=\widehat{CEM}\)(hai góc đối đỉnh)

Do đó: ΔEAB đồng dạng với ΔECM

=>\(\dfrac{EA}{EC}=\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

=>\(\dfrac{EA}{EC}=\dfrac{AB}{CM}=AB:\dfrac{CD}{2}=2\cdot\dfrac{BA}{CD}\)

b: Xét ΔFAB và ΔFMD có

\(\widehat{FAB}=\widehat{FMD}\)(hai góc so le trong, AB//DM)

\(\widehat{AFB}=\widehat{MFD}\)(hai góc đối đỉnh)

Do đó: ΔFAB đồng dạng với ΔFMD

=>\(\dfrac{FA}{FM}=\dfrac{FB}{FD}=\dfrac{AB}{MD}\)

Ta có: \(\dfrac{FA}{FM}=\dfrac{AB}{MD}\)

\(\dfrac{EB}{EM}=\dfrac{AB}{CM}\)

mà MD=MC

nên \(\dfrac{FA}{FM}=\dfrac{EB}{EM}\)

=>\(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

Xét ΔMAB có \(\dfrac{MF}{FA}=\dfrac{ME}{EB}\)

nên FE//AB

Ta có: FE//AB

AB//CD

Do đó: FE//CD

c: Xét ΔADM có HF//DM

nên \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\)

Xét ΔBDM có FE//DM

nên \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

Xét ΔBMC có EG//MC

nên \(\dfrac{EG}{MC}=\dfrac{BE}{BM}\)

mà \(\dfrac{FE}{DM}=\dfrac{BE}{BM}\)

và MC=MD

nên FE=EG

Ta có: \(\dfrac{AF}{FM}=\dfrac{BE}{EM}\)

=>\(\dfrac{FM}{FA}=\dfrac{EM}{BE}\)

=>\(\dfrac{FM}{FA}+1=\dfrac{EM}{BE}+1\)

=>\(\dfrac{FM+FA}{FA}=\dfrac{EM+BE}{BE}\)

=>\(\dfrac{AM}{FA}=\dfrac{BM}{BE}\)

=>\(\dfrac{AF}{AM}=\dfrac{BE}{BM}\)

mà \(\dfrac{HF}{DM}=\dfrac{AF}{AM}\) và \(\dfrac{BE}{BM}=\dfrac{FE}{DM}\)

nên HF=FE

mà FE=EG

nên HF=FE=EG

10 tháng 7 2019

cách 2, câu b/

Gọi giao của AC và BD là I, chứng minh được DI= CI

mà ED =CF 

=> IE= IF

mặt khác, tam giác IEF và tam giác IDC cùng cân tại I nên EF // CD

10 tháng 7 2019

cách 1, câu b/

Gọi N là giao EF và BC

dùng đường trung bình và tiên đề Euclid, chứng minh được E,F,N thẳng

>>> đpcm