K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

a:

ABCD là hình thoi

=>\(\widehat{C}+\widehat{B}=180^0\) và \(\widehat{B}=\widehat{D}=60^0\)

=>\(\widehat{C}=180^0-60^0=120^0\)

Xét ΔAFB vuông tại F và ΔAED vuông tại E có

AB=AD

\(\widehat{B}=\widehat{D}\)

Do đó: ΔAFB=ΔAED

=>AF=AE và BF=ED

Xét tứ giác AECF có

\(\widehat{AEC}+\widehat{AFC}+\widehat{C}+\widehat{FAE}=360^0\)

=>\(\widehat{FAE}+120^0+90^0+90^0=360^0\)

=>\(\widehat{FAE}=60^0\)

Xét ΔAEF có AE=AF và \(\widehat{FAE}=60^0\)

nên ΔAEF đều

b: CE+ED=CD

CF+FB=CB

mà CD=CB và ED=FB

nên CE=CF

Xét ΔCBF có \(\dfrac{CE}{CD}=\dfrac{CF}{CB}\)

nên EF//BD

21 tháng 11 2023

Mình cảm ơn ạ.

a: Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

=>BD=AB

Xét tứ giác ABDE có

H là trung điểm chung của AD và BE

AB=BD

=>ABDE là hình thoi

b: ABDE là hình thoi

=>DE//AB

mà DC//AB

nên D,E,C thẳng hàng

6 tháng 10 2016

Hạ K vuông góc DC tại N =>EM//KN﴾1﴿ Vì F dx K qua BC =>FC=CK =>2 góc FCB=FCK Mà A=C=60 độ =>góc KCN=60 Xét 2 tam giác vuông EMD và KNC có: ED=CK﴾cùng Bằng FC﴿ D= góc KCL => tam giác EMD=KNC ﴾cạnh huyền góc nhọn ﴿ =>EM=KN﴾2﴿ Từ ﴾1﴿ và ﴾2﴿ =>EKNM là HBH =>EK//DC =>EK//AB

20 tháng 11 2018

hạ K vuông góc DC tại N => EM//KN(1)

vì F dx K qua BC = > FC = CK

=> 2 góc FCB = FCK 

mà A=C + 60 độ => góc KCN = 60 

xét 2 tam giác vuông EMD và KNC có :ED = CK ( cùng bằng FC ) D = góc KCL 

=> tam giác EMD = KNC ( cạnh huyền góc nhọn ) 

=> EM = KN  (2) từ (1) và (2) 

=> EKNM là HBH => EK//DC=>EK//AB

18 tháng 9 2016

Bạn nào giúp mình với mình đang cần gấp nè

20 tháng 11 2023

Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

=>AEDF là hình chữ nhật

Hình chữ nhật AEDF có AD là phân giác của \(\widehat{FAE}\)

nên AEDF là hình vuông

21 tháng 11 2023

Mình cảm ơn ạ.

25 tháng 10 2017

c) Biết BD=16cm . Tính chu vi tam giác AEF

Mấy câu trên bạn lm được rồi mimhf sẽ không giải nữa mà chỉ làm câu d thôi.

  Ta có : các điểm D; E; F lần lượt nằm trên các cạnh AC; AB; BC

       Mà 3 đoạn thẳng AF; BD; CE đồng quy tại H

Áp dụng định lý Ceeva vào tam giác ABC ta được:

       EA/EB . FB/FC . DC/DA = 1