K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2015

ABCDMNKHI

Gọi I là trung điểm của DC. AI giao với DK tại H

+) Tứ giác AMCI là hình bình hành ( AM = CI và AM // CI) => AI // CM 

+) Trong tam giác DKC có: HI // CK; I là trung điểm của DC => H là trung điểm của DK  (1)

+) Xét tam giác DCN và  CBM có: CN = BM ; góc DCN = CBM; DC = BC

=> tam giác DCN = CBM ( c - g - c) => góc CDN = MCB 

=> góc CDN + DCM = MCB + DCM = góc DCB = 90=> góc DKC = 90=> DK vuông góc với CM 

mà CM // AI => AI vuông góc với DK (2)

Từ (1)(2) => AI là đường trung trực của DK => AD = AK 

14 tháng 2 2016

ảnh ở đâu đấy,làm sao vậy chỉ đi

12 tháng 10 2017

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

8 tháng 8 2019

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

29 tháng 12 2014

cả bài này đều sử dụng đường trung bình

 

5 tháng 11 2017

A B C D E K F a) Hình thang ABCD có:

E là trung điểm của AD (1)

F là trung điểm của BC

=> EF là đường trung bình của hình thang ABCD

nên EF// CD

=> EK // CD (2)

Từ (1)(2) => KA = KC

b)  * Xét tam giác ACD có:

EA =ED (gt)

KA = KC (cmt)

=> EK là đường trung bình của tam giác ACD

=>EK = 1/2 CD

=>CD = 6 x 2

 CD= 12 cm

* Tương tự chứng minh KF là đường trung bình của tam giác ABC

=> KF =1/2 AB

=>AB = 2 x 2

AB = 4 cm

12 tháng 11 2021

a, Vì \(\left\{{}\begin{matrix}AD=AB\\AI=DK\left(\dfrac{1}{2}AD=\dfrac{1}{2}DC\right)\\\widehat{BAD}=\widehat{ADK}=90^0\end{matrix}\right.\) nên \(\Delta AIB=\Delta DKA\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{DAI}\\ \Rightarrow\widehat{DAI}+\widehat{AIB}=\widehat{ABI}+\widehat{AIB}=90^0\\ \Rightarrow BI\perp AK\)

AH
Akai Haruma
Giáo viên
24 tháng 10 2023

Lời giải:
a. Vì $ABCD$ là hình chữ nhật nên $\widehat{A}=\widehat{D}=90^0$

$MN\perp CD$ nên $\widehat{MND}=90^0$
Tứ giác $AMND$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{N}$ nên là hcn.

b. 

Hoàn toàn tương tự phần a ta thấy $\widheat{B}=\widehat{C}=\widehat{N}$ nên $BMNC$ là hcn

$\Rightarrow BM=NC$
$AMND$ là hcn nên $AM=DN$

Mà $AM=BM$ nên $AM=NC$
Có $AM\parallel NC$ (do $AB\parallel CD$) và $AM=NC$ nên $AMCN$ là hbh

$\Rightarrow AC, MN$ cắt nhau tại trung điểm mỗi đường.

Mà $O$ là trung điểm $MN$ nên $O$ cũng là trung điểm $AC$.

c.

Vì $AMCN$ là hbh (theo phần b) nên $AN\parallel CM$

$\Rightarrow EN\parallel FC$
$\Rightarrow \frac{DE}{EF}=\frac{DN}{NC}=1$ (theo định lý Talet)

$\Rightarrow DE=EF(1)$

Mặt khác:

$AN\parallel CM$

$\Rightarrow MF\parallel AE$

$\Rightarrow \frac{BF}{EF}=\frac{BM}{MA}=1$ (định lý Talet)

$\Rightarrow BF=EF(2)$

Từ $(1); (2)\Rightarrow DE=EF=BF$

AH
Akai Haruma
Giáo viên
24 tháng 10 2023

Hình vẽ: