K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 5 2019

Gọi giao của SB với \(A'B'\) là M, giao của \(SD\) với \(A'D'\) là N

\(\Rightarrow M,N\) lần lượt là trung điểm A'B' và A'D'

\(\Rightarrow\Delta MA'N\) vuông cân tại A' với \(A'M=A'N=\frac{a}{2}\)

\(V_{A'MN.ABD}=V_{S.ABD}-V_{SA'MN}=\frac{1}{6}\left(SA.AB^2-SA'.A'M^2\right)\)

\(=\frac{1}{6}\left(2a.a^2-a.\left(\frac{a}{2}\right)^2\right)=\frac{7a^3}{24}\)

NV
26 tháng 5 2019

Nối \(SB';SC';SD'\) lần lượt cắt \(A'B';A'C';A'D'\) tại M, N, P

\(\Rightarrow M,N,P\) là trung điểm của A'B', A'C', A'D' theo tính chất đường trung bình

\(\Rightarrow A'MNP\) là hình vuông cạnh \(\frac{a}{2}\)

\(V_{A'MNP.ABCD}=V_{S.ABCD}-V_{S.A'MNP}=\frac{1}{3}\left(SA.AB^2-SA'.AM^2\right)\)

\(=\frac{1}{3}\left(2a.a^2-a.\left(\frac{a}{2}\right)^2\right)=\frac{7a^3}{12}\)

12 tháng 11 2017

Chọn B

Trong mặt phẳng (SAC) dựng MP song song với SC cắt AC tại P. Trong mặt phẳng (SBC) dựng NQ song song với SC cắt BC tại Q. Gọi D là giao điểm của MN và PQ. Dựng ME song song với AB cắt SB tại E (như hình vẽ).

Ta thấy:

Suy ra N là trung điểm của BE và DM, đồng thời

 

1 tháng 10 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 12 2018

Chọn A

 

29 tháng 7 2018

22 tháng 4 2019

Chọn D

Thể tích khối chóp S. ABCD là:

Thể tích tứ diện SMNC là:

.

Thể tích tứ diện NACD là:

.

Thể tích tứ diện MABC là:

.

Thể tích tứ diện SAMN là:

.

Mặt khác ta có:

Suy ra:

13 tháng 5 2018

Phương pháp:

Sử dụng công thức tỉ số thể tích cho khối chóp tam giác

(Công thức Simson): Cho khối chóp S.ABC, các điểm A 1 ,   B 1 ,   C 1  

lần lượt thuộc SA, SB, SC. Khi đó,

Cách giải:

Dựng 

=> MNPQ là thiết diện cần dựng.

V i là thể tích khối đa giác SNM.APQ

Khi đó, khối đa giác SNM.APQ được chia làm 2 phần:

 

khối chóp tam giác S.RMN và khối lăng trụ RMN.AQP.

Giả sử  S M S B = x

Ta có: 

Mà  V 1 V   =   20 27  

Chọn: A

5 tháng 10 2019

5 tháng 8 2021

đáp án là A nha