Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
\(M=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+...2^{19}\right)⋮3\)
\(M=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{17}+2^{19}\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)
\(M=2\left(1+2^2\right)+2^5\left(1+2^2\right)+...+2^{17}\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(M=2.5+2^5.5+...+2^{17}.5+...+2^{18}.5⋮5\)
\(M=2+2^2+2^3+2^4+...+2^{20}\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\\ =6+2^2.6+...+2^{18}.6\\ =\left(1+2^2+...+2^{18}\right).6⋮6\)
M = 2 + 22 + 23 + ... + 220
M = 21 + 22 + 23 + ... + 220
Xét dãy số: 1; 2; 3;...; 20 dãy số này có 20 số hạng vậy M có 20 hạng tử. Vì 20 : 2 = 10 nên nhóm 2 hạng tử liên tiếp của M thành 1 nhóm thì:
M = (21 + 22) + (23 + 24) + ... + (219 + 220)
M = 6 + 22.( 2+ 22) + ... + 218(2 + 22)
M = 6 + 22.6 + ... + 218. 6
M = 6. ( 1 + 22 + ... + 218)
vì 6 ⋮ 6 nên 6.(1 + 22 + ... + 218) ⋮ 6 hay M = 2 + 22+...+220 ⋮ 6(đpcm)
không nhớ nhầm thì làm như này
\(M=2+2^2+2^3+...+2^{20}=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\)
\(=5\left(1+2^2+...+2^{18}\right)⋮5\left(đpcm\right)\)
M = ( 2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) +......+ (217 + 218 + 219 + 220)
= 2.(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + 217.(1 + 2 +22 + 23)
= 2.15 + 25.15 + 217.15
= 15. 2.(1 + 24 +....+ 216)
= 5. 3. 2.(1 + 24 + ....+ 216)
=> M chia hết cho 5
a)n(n+2013)
xét 2 tr hp.
tr hp 1:n là số lẻ
=>n+2013 là số chẵn
=>n(n+2013) là số chẵn =>n(n+2013) chia hết cho 2.
tr hp 2:nlà số chẵn
=>n(n+2013) là số chẵn=> n(n+2013) chia hết cho 2.
b)M=21+22+23+24+....+220
M=2.1+2.2+2.4+2.8 +25.1+25.2+25.4+25.8+.......+217.1+217.2+217.4+217.8
M=2(1+2+4+8)+25(1+2+4+8)+....+217(1+2+4+8)
M=2.15+25.15+....+217.15
=>M chiia hết cho 5
M = 2+22 +23+24+.....+220 chứng tỏ rằng M chia hết cho 5
Số số hạng của tổng là :
(20-1) : 1 +1 = 20 ( số hạng )
Ta ghép 4 số vào 1 nhóm , như vậy có số nhóm là :
20 : 4 = 5 ( nhóm )
Ta có :
M = 2+22+23+24+24+.....+220
= ( 2 + 22+23+24)+.....+(217+218+219+220)
= 2.(1+2+3+4)+.....+217.(1+2+3+4)
= 2.10+....217.10
= (2+...+217 ) . 10 chia hết cho 5
Vậy ta có điều phải chứng minh.
Ta có M = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + ... + 217 + 218 + 219 + 220
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (217 + 218 + 219 + 220)
= 2(1 + 2 + 22 + 23) + 25(1 + 2 + 22 + 23) + ... + 217(1 + 2 + 22 + 23)
= (1 + 2 + 22 + 23)(2 + 25 + ... + 217)
= 15(2 + 25 + ... + 217)
= 3.5.(2 + 25 + ... + 217)
=> M \(⋮\)3;5
Ta có: M = 2+22+23+....+220
=> M = (2+22+23)+(24+25+26)+...+(217+218+219+220)
=> M = 2 x (1+2+22) + 24 x (1+2+22)+....+217 x (1+2+22)
=> M = 2 x 5 + 24 x 5 +......+217 x 5
=> M = 5 x (2+24+...+217) chia hết cho 5
Vậy M chia hết cho 5
M=2+22+23+...+220.
=(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220).
=2.(1+2+22+23)+25.(1+2+22+23)+...+217.(1+2+22+23).
=2.15+25+15+...+217+15.
=15.2.(1+24+...+216)
=3.5.2.(1+24+...+216) chia hết cho 5
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
Bực olm ghê đánh gần xong bài,thì olm không cho đăng,bắt tải lại tap.Làm nãy giờ năm lần rồi đó olm!!!Lần này không được nữa thì bỏ olm:v
\(M=2+2^2+2^3+...+2^{20}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)
\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(=5\left(2+2^2+...+2^{18}\right)⋮5^{\left(đpcm\right)}\)
M = 2 + 22 + 23 + 24 + .... + 220
= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 217 + 218 + 219 + 220 )
= 2 *( 1 + 2 + 22 + 23 ) + 25 * ( 1 + 2 + 22 + 23 ) + ... + 217 * ( 1 + 2 + 22 + 23 )
= 2 * 15 + 25 * 15 + ..... + 217 * 15
= 15 * ( 2 + 25 + ... + 217 )
= 5 * 3 * ( 2 + 25 + ... + 217 )
\(\Rightarrow\) M \(⋮\)5
\(\Leftrightarrow M=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(\Leftrightarrow M=30+2^4\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow M=30+2^4.30+...+2^{16}.30\)
\(\Leftrightarrow M=30\left(1+2^4+...+2^{16}\right)⋮5\)
\(M=\left(2+2^2+2^3+2^4\right)+...+2^{17}\left(2+2^2+2^3+2^4\right)\)
\(=30\cdot\left(1+...+2^{17}\right)⋮5\)