Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a<0;A>0 và b<c
=> a và b là số âm, còn c là số dương.
mà A>0 => c>0 vì A=a.b.c
vì b là số âm => b<0.
(do đó: b.c<0.)
vậy b<0 và c>0.
chúc học giỏi, k nha...
Có: a<0, A>0, b<c.
=> a và b là số nguyên âm, c là số nguyên dương.
mà A>0.
=> c>0(vì A=a.b.c).
mà b là số nguyên âm.
=>b<0.
Vậy b<, c>0.
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
Ta có: \(P< 0\) \(\Rightarrow a\cdot b\cdot c< 0\)
Nên trong 3 số a,b,c phải có 1 hoặc 3 số nhỏ hơn 0
Mà: \(a>0\) nên \(\Rightarrow b.c< 0\) thì trong đó 1 số hai số đó phải nhỏ hơn 0
Lại có: \(b>c\) nên b thuộc số dương \(b>0\) và c thuộc số âm \(c< 0\)
Vậy: ...
Ta có: M > N hay M - N > 0
\(\Leftrightarrow\left(a+b-1\right)-\left(b-c-1\right)>0\)
\(\Leftrightarrow a+b-1-b+c+1>0\)
\(\Leftrightarrow a+\left(b-b\right)+c+\left(1-1\right)>0\)
\(\Leftrightarrow a+0+c+0>0\)
\(\Leftrightarrow a+c>0\)
Vậy a + c > 0
Vì a < 0 ; A > 0 và b < c
=>a và b là số nguyên âm .Còn c là số nguyên dương.
mà A > 0 nên c > 0 vì A=a.b.c
Vì b là số nguyên âm nên b < 0,do đó b.c <0
Vậy b < 0; c >0.
giải:
ad - bc = 1 nên ad lớn hơn ac 1 đơn vị
=> bc - ad = -1
so sánh: \(y\)và \(t=\frac{a+m}{b+m}\)
ta so sánh: \(\frac{c}{d}\)và \(\frac{a+m}{b-m}\)
ta xét hiệu của \(\left[c\left(b-m\right)\right]-\left[d\left(a+m\right)\right]\)
\(=\left(bc+cn\right)-\left(ad+md\right)\)
\(=bc+cn-ad-md\)
\(=\left(bc-ad\right)+\left(cn-md\right)\)
\(=-1+0\)
\(=-1\)
\(\Rightarrow\)\(c\left(b+n\right)< d\left(a+m\right)\)
\(\Rightarrow\)\(\frac{c}{d}< \frac{a+m}{b+n}\)
vậy \(y< t\)