Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng tương tự với câu trước đó thôi nhé Trương Tuấn Dũng ^^
Ta có : \(A=-3m^2+2m+32=-3\left(m-\frac{1}{3}\right)^2+\frac{97}{3}\)
\(m\ge-3\Leftrightarrow-3\left(m-\frac{1}{3}\right)^2\le-\frac{100}{3}\Rightarrow A\le-1\)
Vậy Max A = -1 <=> m = -3
\(A=\frac{2m^2-4m+5}{m^2-2m+2}=\frac{3\left(m^2-2m+2\right)-\left(m^2-2m+1\right)}{m^2-2m+2}\)
\(=3-\frac{\left(m-1\right)^2}{m^2-2m+2}\le3do\hept{\begin{cases}\left(m-1\right)^2\ge0\\\left(m-1\right)^2+1>0\end{cases}\Rightarrow\frac{\left(m-1\right)^2}{m^2-2+2}\ge0}\)
dấu ''='' xay ra khi và chỉ khi x=1
VẬY GTLN CỦA ALAF 3 TẠI X=1
Ta có : \(P=2m^2+30m+72=2\left(m+\frac{15}{2}\right)^2-\frac{81}{2}\)
Vì \(m\ge3\Leftrightarrow2\left(m+\frac{15}{2}\right)^2\ge\frac{441}{2}\Leftrightarrow P\ge180\)
Vậy Min \(P=180\Leftrightarrow m=3\)
Ta có: \(A=\frac{2m^2-4m+5}{m^2-2m+2}\)
\(=\frac{2m^2-4m+2+3}{m^2-2m+1+1}=\frac{2\left(m^2-2m+1\right)+3}{\left(m^2-2m+1\right)+1}\)
\(=\frac{2\left(m-1\right)^2+3}{\left(m-1\right)^2+1}\ge\frac{3}{1}=3\) (do \(\left(m-1\right)^2\ge0\))
Dấu "=" xảy ra \(\Leftrightarrow m-1=0\Leftrightarrow m=1\)
Vậy \(A_{min}=3\Leftrightarrow m=1\)
\(A=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
\(\sqrt[3]{\frac{4}{9}}A=\sqrt[3]{\frac{4}{9}}.\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)\)
\(\le\frac{a+b+\frac{2}{3}+\frac{2}{3}}{3}+\frac{b+c+\frac{2}{3}+\frac{2}{3}}{3}+\frac{c+a+\frac{2}{3}+\frac{2}{3}}{3}\)
\(=\frac{4}{3}+\frac{2}{3}\left(a+b+c\right)=2\)
\(\Rightarrow A\le\frac{2}{\sqrt[3]{\frac{4}{9}}}=\sqrt[3]{18}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Holder ta có:
\(A^3=\left(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\right)^3\)
\(\le\left(1+1+1\right)\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=9\cdot2\left(a+b+c\right)=9\cdot2=18\)
\(\Rightarrow A^3\le18\Rightarrow A\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
a) 2 y − 1 9 y 2 − 1
b) Chú ý: m 3 - 1 = (m-1)( m 2 + m + 1), tìm được: 2 m 2 + m + 1
Ta có : \(A=-3m^2+2m+32=-3\left(m-\frac{1}{3}\right)^2+\frac{97}{3}\)
Với \(m\ge-3\Rightarrow-3\left(m-\frac{1}{3}\right)^2\le-\frac{100}{3}\Rightarrow A\le-1\)
Dấu "=" xảy ra khi m = -3
Vậy Max A = -1 <=> m = -3
m=0 thì A=32