Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để P đạt GTLN => 100-x nhỏ nhất và 100-x > 0
=> 100-x=1 => x=99
Khi đó P=1000/100-99=1000/1=1000
Vậy Pmax = 1000 khi x=99
\(P=\frac{1000}{100-x}\)
.\(P_{max}=>P\in Z\)
\(=>100-x=1\)
\(\Rightarrow x=100-1=99\)
\(P_{max}=\frac{1000}{100-99}=1000\)
Anh ST làm đúng rồi đấy
\(A=\frac{2006-x}{6-x}=1+\frac{2000}{6-x}\)
Để \(1+\frac{2000}{6-x}\) đạt GTLN <=> \(\frac{2000}{6-x}\) đạt GTLN
Mà x nguyên => 6 - x là số nguyên dương nhỏ nhất Tức là 6 - x = 1 => x = 5
Vậy GTNN của A là \(\frac{2006-5}{6-5}=2001\) tại x = 5
x=5;A=2001
tự tìm hiểu cách giải nha.Tiện thể tôi không phải là uzumaki naruto đâu
\(A=\frac{2006-x}{6-x}=1\frac{2000}{6-x}\)
=> để A đạt gia trị lớn nhất thì 6-x phải đạt giá trị nhỏ nhất (>0) và x khác 6
A lớn nhất khi 6-x nên => 6-x=1
=> x=5
giá trị lớn nhất của A khi đó là:
A=(2006-5)/(6-5)=2001
\(A=\frac{2000+6-x}{6-x}=1+\frac{2000}{6-x}\)
A đạt GTLN \(\Leftrightarrow\frac{2000}{6-x}\)đạt GTLN
\(\frac{2000}{6-x}\)đạt GTLN \(\Leftrightarrow6-x\) đạt GTNN
Ta có \(6-x\ge1\)
Dấu = xảy ra \(\Leftrightarrow x=5\)
Do đó GTLN của A \(=1+\frac{2000}{1}=2001\)
Vậy GTLN của A là 2001 \(\Leftrightarrow x=5\)
\(A=\frac{2020}{9-x}\left(x\ne9\right)\)
Để A đạt GTLN thì 9-x bé nhất
=> 9-x=1
=> x=8
Vậy \(A_{max}=\frac{2020}{9-8}=2020\)tại x=8
Hok Tốt !!!!!!!!!!!!!!
\(A=\frac{2020}{9-x}\)
A đạt giá trị lớn nhất
\(\Leftrightarrow\frac{2020}{9-x}\) lớn nhất
\(9-x\) nhỏ nhất ( vì 2020 là hằng số )
Vì 9 - x khác 0
\(\Rightarrow9-x=1\)
\(x=9-1\)
\(x=8\)
\(A=\frac{2020}{9-x}=\frac{2020}{9-8}=2020\)
Vật Giá trị lớn nhất cả A là 2020 khi và chỉ khi x = 8
a) A =1/2 => 2( 15 -2x ) =6- x
=> 4x -x = 30 -6 => 3x =24 => x =8
b) \(A=\frac{2x-15}{x-6}=2-\frac{3}{x-6}\)
A thuộc Z => x -6 thuộc Ư(3) ={ -3;-1;1;3}
Max A = 2 +3 =5 khi x - 6 = -1 => x =5
Ta có:
\(P=\frac{1000}{100-x}\)
Để P đạt GTLN khi \(100-x\)đạt GTNN và \(x\ne1000\)
Ta có: khi \(x< 0\)thì \(100-x>100\)
Suy ra \(100-x\)đạt GTNN là 1
Vậy P đạt GTLN là 1000 tại \(x=99\)