K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

8 tháng 3 2018

a, Khi m = 0 thì : 

pt <=> x^2+2x-3 = 0 

<=> (x-1).(x+3) = 0

<=> x-1=0 hoặc x+3=0

<=> x=1 hoặc x=-3

Tk mk nha

28 tháng 10 2019

Đáp án D

20 tháng 3 2022

tham khảo:

a: Thay x=5 vào pt, ta được:

5^2-2(m-1)*5+m^2-4m+3=0

=>m^2-4m+3+25-10m+10=0

=>m^2-14m+38=0

=>(m-7)^2=11

=>\(m=\pm\sqrt{11}+7\)

b: x1+x2=2m-2

x1*x2=m^2-4m+3

(x1+x2)^2-4x1x2

=4m^2-8m+4-4m^2+4m-6

=-4m-2

(x1+x2)^2-4x1x2+2(x1+x2)

=-4m-2+4m-4=-6

8 tháng 1

a) Để phương trình có nghiệm \(x_1,x_2\)

Thì \(\Delta'>0\)

\(\Leftrightarrow\left(m-2\right)^2-1.\left(2m-5\right)>0\)

\(\Leftrightarrow m^2-4m+4-2m+5>0\)

\(\Leftrightarrow m^2-6m+9>0\)

\(\Leftrightarrow\left(m-3\right)^2>0\)

\(\Leftrightarrow m\ne3\)

b)Với m khác 3. Theo hệ thức viet ta có

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-4\left(1\right)\\x_1.x_2=2m-5\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2) ta được

\(x_1+x_2-x_1.x_2=1\) không phụ thuộc vào m

 

 

 

NV
12 tháng 3 2021

Với \(m\ne1\):

a. \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb khi \(m\ne1\)

b. Theo hệ thức Viet: \(x_1x_2=\dfrac{m+1}{m-1}\)

\(\Rightarrow\dfrac{m+1}{m-1}=5\Rightarrow m=\dfrac{3}{2}\)

Khi đó: \(x_1+x_2=\dfrac{2m}{m-1}=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=6\)

c. \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-1}\\x_1x_2=1+\dfrac{2}{m-1}\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

d. \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+\dfrac{1}{2}x_1x_2=0\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}+\dfrac{m+1}{2\left(m-1\right)}=0\)

\(\Leftrightarrow8m^2+\left(m^2-1\right)=0\)

\(\Leftrightarrow m^2=\dfrac{1}{9}\Rightarrow m=\pm\dfrac{1}{3}\)