K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2021

Phương trình có 2 nghiệm pb khi:

\(\Delta'=\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\)

\(\Rightarrow m>-\dfrac{1}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2-2}{2}=m\\x_1x_2=m^2\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2-2}{2}\right)^2\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

9 tháng 5 2021

a,Phương trình có 2 nghiệm pb khi: \(\Delta'>0\Rightarrow\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\Leftrightarrow m>\dfrac{-1}{2}\)

 

a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m=4m^2-4m+4\)

\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-2\left(m-1\right)\right]}{1}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=-\dfrac{m}{1}=-m\end{matrix}\right.\)

\(x_1+x_2+2x_1x_2=2m-2+\left(-2m\right)=-2\)

=>\(x_1+x_2+2\cdot x_1\cdot x_2\) là hệ thức không phụ thuộc vào m

b: Để phương trình có đúng 1 nghiệm âm thì nghiệm còn lại sẽ lớn hơn hoặc bằng 0

=>a*c<=0

=>1*(-m)<=0

=>-m<=0

=>m>=0

c: Để \(\left\{{}\begin{matrix}\left|x_1\right|=\left|x_2\right|\\x_1\cdot x_2< 0\end{matrix}\right.\) thì \(x_1=-x_2\)

=>\(x_1+x_2=0\)

=>2(m-1)=0

=>m-1=0

=>m=1

d: \(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m-2\right)^2-4\cdot1\left(-m\right)}\)

\(=\sqrt{4m^2-8m+4+4m}\)

\(=\sqrt{4m^2-4m+4}\)

\(=\sqrt{\left(2m-1\right)^2+3}>=\sqrt{3}\forall m\)

Dấu '=' xảy ra khi 2m-1=0

=>\(m=\dfrac{1}{2}\)

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

a: Thay x=5 vào pt, ta được:

5^2-2(m-1)*5+m^2-4m+3=0

=>m^2-4m+3+25-10m+10=0

=>m^2-14m+38=0

=>(m-7)^2=11

=>\(m=\pm\sqrt{11}+7\)

b: x1+x2=2m-2

x1*x2=m^2-4m+3

(x1+x2)^2-4x1x2

=4m^2-8m+4-4m^2+4m-6

=-4m-2

(x1+x2)^2-4x1x2+2(x1+x2)

=-4m-2+4m-4=-6

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

20 tháng 3 2022

tham khảo:

23 tháng 4 2020

ĐK; m\(\ne1\)

Đen-ta\(=4m^2-4m^2+4=4>0.\)

vậy pt có 2 nghiệm phân biệt. Áp dụng hệ thức vi-et:

\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=\frac{2m-2+2}{m-1}=2+\frac{2}{m-1}\\x_1x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)

\(x_1+x_2-x_1x_2=1\)

vậy nghiệm của pt không phụ thuộc m

Học tốt

6 tháng 4 2023

`a)` Ptr `(1)` có nghiệm `<=>[-(n-1)]^2-(-n-3) >= 0`

              `<=>n^2-2n+1+n+3 >= 0<=>n^2-n+4 >= 0` (LĐ `AA n`)

 `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

Ta có: `x_1 ^2+x_2 ^2=10`

`<=>(x_1+x_2)^2-2x_1.x_2=10`

`<=>(2n-2)^2-2.(-n-3)=10`

`<=>4n^2-8n+4+2n+6-10=0`

`<=>[(n=3/2),(n=0):}`

`b)` Có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

`<=>{(x_1+x_2=2n-2),(2x_1.x_2=-2n-3):}`

  `=>x_1+x_2+2x_1.x_2=-5`

NV
12 tháng 3 2021

Với \(m\ne1\):

a. \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb khi \(m\ne1\)

b. Theo hệ thức Viet: \(x_1x_2=\dfrac{m+1}{m-1}\)

\(\Rightarrow\dfrac{m+1}{m-1}=5\Rightarrow m=\dfrac{3}{2}\)

Khi đó: \(x_1+x_2=\dfrac{2m}{m-1}=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=6\)

c. \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-1}\\x_1x_2=1+\dfrac{2}{m-1}\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

d. \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+\dfrac{1}{2}x_1x_2=0\)

\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}+\dfrac{m+1}{2\left(m-1\right)}=0\)

\(\Leftrightarrow8m^2+\left(m^2-1\right)=0\)

\(\Leftrightarrow m^2=\dfrac{1}{9}\Rightarrow m=\pm\dfrac{1}{3}\)