Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 1a2b chia hết cho 5 =>b=0;5 nhưng 1a2b ko chia hết cho 2 nên b=5
ta được 1a25
để 1a25 chia hết cho 9
=>1+a+2+5 chia hết cho 9
=>8 +a chia hết cho 9
=> a= 1
vậy số cần tìm là 1125
vì 5 số tự nhiên này ko chia hết cho 5 nên có thể có các số dư là 1;2;3;4
Mà số các số tự nhiên lớn hơn số các số dư nên có ít nhất 2 số có cùng số dư
=> hiệu 2 số này chia hết cho 5
c chia 5 dư 2 => c = 5k + 2
a,b chia 5 dư 3 => a = 5m + 3 ; b = 5n + 3
a) a + c = 5k + 2 + 5m + 3 = 5k + 5m + 5 = 5(k + m + 1) chia hết cho 5.
b + c = 5n + 3 + 5k + 2 = 5n + 5k + 5 = 5(n + k + 1) chia hết cho 5.
a - b = 5m + 3 - 5n + 3 = 5m - 5n = 5(m - n) chia hết cho 3
b) a + b + c = 5m + 3 + 5n + 3 + 5k + 2 = 5m + 5n + 5k + 5 + 3 = 5(m + n + 1) + 3 ko chia hết cho 5
a + b - c = 5m + 3 + 5n + 3 - 5k + 2 = 5m + 5n - 5k + 4 = 5(m + n - k) + 4 ko chia hết cho 5
a + c - b = 5m + 3 + 5k + 2 - 5n + 3 = 5m + 5k - 5n + 2 = 5(m + k - n) + 2 ko chia hết cho 5.
S = 21 + 22 + 23 + ........... + 2100
2S = \(2^2+2^3+2^4+.........+2^{101}\)
2S - S = \(\left(2^2+2^3+2^4+.......+2^{101}\right)-\left(2^1+2^2+2^3+.......+2^{100}\right)\)
\(2S-S=2^2+2^3+2^4+.......+2^{101}-2^1-2^2-2^3-.......-2^{100}\)
S = \(2^{101}-2^1\)
Mà 2101 chia hết cho 5 => S \(⋮\)5
trong câu hỏi tương tự có đấy bạn