Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)
Bai 1:
Ap dung dinh li Py-ta-go vao tam giac AHB ta co:
AH^2+BH^2=AB^2
=>12^2+BH^2=13^2
=>HB=13^2-12^2=25
Tuong tu voi tam giac AHC
=>AC=20
=>BC=25+16=41
a) Vì tam giác ABC cân tại A=> AB=AC =>\(\frac{AB}{2}=\frac{AC}{2}\)  => AD=AE
Xét tam giác ABE và tam giác ACD có:
AB=AC
góc A: chung
AE=AD
=> tam giác ABE= tam giác ACD (c.g.c)
b) Theo câu a) tam giác ABE= tam giác ACD
=> BE=CD
c) Vì tam giác ABC cân tại A => góc ABC = góc ACD =>\(\frac{ABC}{2}=\frac{ACB}{2}\)=> góc EBC= góc DCB
Xét tam giác BCD và tam giác CBE có:
góc DBC = góc ACB
BC: chung
goc DCB= goc EBC
=> tam giac BCD= tam giac CBE (g.c.g)
=> BD=EC
Xét tam giác BKD và tam giác CKE co:
goc BDK= goc CEK=90 do
BD= EC
góc DBK= goc ECK
=> tam giac BKD = tam giac CKE (g.c.g)
=> BK=CK
=> tam giác KBC cân tại K
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
a) Vì ΔABC cân tại A (gt)
⇒ AB = AC (t/c)
Xét ΔABH và ΔACH có:
AH chung
∠HAB = ∠HAC (AH là phân giác của góc A)
AB = AC (cmt)
⇒ ΔABH = ΔACH (c.g.c)
Vậy ΔABH = ΔACH (c.g.c)
b) Vì ΔABH = ΔACH (cmt)
⇒ ∠AHB = ∠AHC (2 góc tương úng)
Ta có: ∠AHB + ∠AHC = 1800 (2 góc kề bù)
⇒ ∠AHB = ∠AHC = 1800/2 = 900
Ta có: ∠AHC + ∠dCH = 1800 (2 góc bù nhau)
T/s: 900 + ∠DCH = 1800
∠DCH = 1800 - 900
∠DCH = 900
⇒ DC⊥CH (đn 2 đt vuông góc)
Vậy DC⊥CH
a) Ta có AB = AC => ABC là tg cân ( cân tại A)
Xét \(\Delta ABD\)Và \(\Delta ACD\)
\(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )
\(AC=AB\)
AD LÀ CẠNH CHUNG
=> 2 tam giác = nhau ( c.g.c )
b) Ta có Ay//BC
=> \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )
Mà \(\widehat{ACB}=\widehat{ABC}\)
=> \(\widehat{yAC}=\widehat{ABC}\)
c) Ta có tg ABC cân
=> AD là đg phân giác cũng là đường cao
=> \(AD\perp BC\)
MÀ \(Cx\perp BC\)
=> AD//Cx
d) Ta có Ay ( AK) //BC
Mà \(\widehat{ADC}=90^O\)
=> \(DA\perp Ay\)
Tứ giác AKCD là hình chữ nhâtk
mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )
=> I là trung điểm của DK