K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường phân giác

b: BM=CM=BC/2=6cm

nên AM=8(cm)

10 tháng 5 2022

a, Ta có AM là trung tuyến của tam giác cân ABC =>AM Đồng thời là đường phân giác và đường trung trực.
b, T a có AM là đường trung trực của tam giác ABC=> góc AMC= 90độ
=> BM=CM=1/2BC=1/2x12=6(cm)
Áp dụng định lý py ta go vào tam giác vuông AMC ta có
    AM2+CM2=AC2thay CM=6cm(CMT); AC=10cm(GT)
=>AM2+62=102
=>AM2+36=100
=>AM2      = 100-36=64=82
=>AM        =8(cm)

28 tháng 6 2019

11 tháng 4 2022

Cho tam giác ABC cân ở A, đường trung tuyến AM.
a) Chứng minh AM BC 
b) Tính AM biết rằng AB cm BC cm   10 , 12

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A 

mà AM là trung tuyến

nên AM vuông gócBC

29 tháng 7 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: ΔABC cân tại A 

mà AM là trung tuyến

nên AM vuông gócBC

27 tháng 7 2021

Bài làm hoàn chỉnh đây nhé bn

undefined

27 tháng 7 2021

Xem lại đề câu c nhé bn

undefined

a)

Sửa đề: ΔBIM=ΔCKM

Xét ΔBIM vuông tại I và ΔCKM vuông tại K có

BM=CM(M là trung điểm của BC)

\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)

18 tháng 3 2021

Giải cả bài giúp  vs ạ

21 tháng 9 2023

Tham khảo:

Xét tam giác ABM và tam giác ACM có :

AM chung

BM = CM ( M là trung điểm BC )

AB = AC (tam giác ABC cân tại A theo giả thiết)

\( \Rightarrow \Delta AMB = \Delta AMC (c-c-c)\)

\( \Rightarrow \widehat{BAM}= \widehat{CAM}\) (2 góc tương ứng)

\( \Rightarrow \) AM thuộc tia phân giác của góc A

Mà AM cắt tia phân giác góc B tại I

\( \Rightarrow \) I là giao của các đường phân giác trong tam giác ABC

\( \Rightarrow \) CI là phân giác góc C (định lí 3 đường phân giác cắt nhau tại 1 điểm)

a: Xet ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE
BD=CE

=>ΔABD=ΔACE
=>AD=AE

b: ΔABC cân tại A
mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC
=>ΔAHB=ΔAKC

d: Xét ΔAED có

AH/AD=AK/AE

nên HK//DE