K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc IFK=góc IFH+góc HFK

=góc FCB+góc AHF

=góc FCB+90 độ-góc HAB

=90 độ

=>FK vuông góc với FI

b: FI=6/2=3cm

FK=BC/2=4cm

=>IK=5cm

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

a)

Tính chất: Trong tam giác $ABC$ vuông tại $A$ bất kỳ, đường trung tuyến $AM$ ứng với cạnh huyền thì bằng một nửa cạnh huyền.

Chứng minh:

Trên tia đối của tia $MA$ lấy $N$ sao cho $MA=MN$

Ta dễ dàng chứng minh được \(BACN\) là hình bình hành có 1 góc vuông nên là hình chữ nhật. Khi đó: \(MA=\frac{1}{2}NA=\frac{1}{2}BC\) (đpcm)

-------------------------

Áp dụng vào bài toán:

Xét tam giác vuông $AFH$ có $FI$ là đường trung tuyến ứng với cạnh huyền nên \(FI=\frac{1}{2}AH=IH\)

\(\Rightarrow \triangle IFH\) cân tại $I$

\(\Rightarrow \widehat{IFH}=\widehat{IHF}=90^0-\widehat{BAH}\)

Tương tự, trong tam giác vuông $BFC$: \(FK=KC\Rightarrow \) tam giác $KFC$ cân tại $K$

\(\Rightarrow \widehat{KFH}=\widehat{KCF}\)

Do đó:
\(\widehat{IFK}=\widehat{IFH}+\widehat{KFH}=90^0-\widehat{BAH}+\widehat{KCF}\)

\(\widehat{BAH}=\widehat{KCF}\) (cùng bằng \(90^0-\widehat{BAC}\))

Suy ra: \(\widehat{IFK}=90^0\Rightarrow FK\perp FI\) (đpcm)

b)

\(FI=\frac{1}{2}AH=3\)

\(FK=\frac{1}{2}BC=4\)

Áp dụng định lý Pitago cho tam giác vuông $FIK$

\(IK=\sqrt{FI^2+FK^2}=\sqrt{3^2+4^2}=5\) (cm)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Hình vẽ:

Mở đầu về phương trình

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEG = 90

0
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d) ...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEj = 90

0