K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 7 2022
a: góc IFK=góc IFH+góc HFK
=góc FCB+góc AHF
=góc FCB+90 độ-góc HAB
=90 độ
=>FK vuông góc với FI
b: FI=6/2=3cm
FK=BC/2=4cm
=>IK=5cm
17 tháng 7 2017
What!!!!!!!!!!!!! Bà cx hỏi câu này ah ?!!! Tui đang nghĩ kéo dài AH thành đg cao AD, rồi CM AD là đg trung trực xong rùi tíh sau đc ko
26 tháng 3 2023
a: HC vuông góc AI
IH vuông góc HM
=>góc AIH=góc MHC(1)
góc IAH=90 độ-góc ABD
góc HCM=90 độ-góc FBC
=>góc IAH=góc HCM(2)
Từ (1), (2) suy ra ΔAHI đồng dạng với ΔCMH
b: Kẻ CG//IK(G thuộc AB), CG cắt AD tại N
=>HM vuông góc CN
=>M là trựctâm của ΔHCN
=>NM vuông góc CH
=>NM//AB
=>NM//BG
=>N là trung điểm của CG
IK//GC
=>IH/GN=HK/NC
mà GN=NC
nên IH=HK
=>H là trung điểm của IK
Lời giải:
a)
Tính chất: Trong tam giác $ABC$ vuông tại $A$ bất kỳ, đường trung tuyến $AM$ ứng với cạnh huyền thì bằng một nửa cạnh huyền.
Chứng minh:
Trên tia đối của tia $MA$ lấy $N$ sao cho $MA=MN$
Ta dễ dàng chứng minh được \(BACN\) là hình bình hành có 1 góc vuông nên là hình chữ nhật. Khi đó: \(MA=\frac{1}{2}NA=\frac{1}{2}BC\) (đpcm)
-------------------------
Áp dụng vào bài toán:
Xét tam giác vuông $AFH$ có $FI$ là đường trung tuyến ứng với cạnh huyền nên \(FI=\frac{1}{2}AH=IH\)
\(\Rightarrow \triangle IFH\) cân tại $I$
\(\Rightarrow \widehat{IFH}=\widehat{IHF}=90^0-\widehat{BAH}\)
Tương tự, trong tam giác vuông $BFC$: \(FK=KC\Rightarrow \) tam giác $KFC$ cân tại $K$
\(\Rightarrow \widehat{KFH}=\widehat{KCF}\)
Do đó:
\(\widehat{IFK}=\widehat{IFH}+\widehat{KFH}=90^0-\widehat{BAH}+\widehat{KCF}\)
Mà \(\widehat{BAH}=\widehat{KCF}\) (cùng bằng \(90^0-\widehat{BAC}\))
Suy ra: \(\widehat{IFK}=90^0\Rightarrow FK\perp FI\) (đpcm)
b)
\(FI=\frac{1}{2}AH=3\)
\(FK=\frac{1}{2}BC=4\)
Áp dụng định lý Pitago cho tam giác vuông $FIK$
\(IK=\sqrt{FI^2+FK^2}=\sqrt{3^2+4^2}=5\) (cm)
Hình vẽ: