Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB=(-7;1)
vecto AC=(1;-3)
vecto BC=(8;-4)
b: \(AB=\sqrt{\left(-7\right)^2+1^2}=5\sqrt{2}\)
\(AC=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
\(BC=\sqrt{8^2+\left(-4\right)^2}=\sqrt{80}=4\sqrt{5}\)
Ta có H nằm giữa B, C nên:
\(BC=BH+CH=10+42=52\left(cm\right)\)
Xét ΔABC vuông tại A và có đường cao AH ta có:
\(AB^2=BH\cdot BC\) (cạnh góc vuông và hình chiếu)
\(\Rightarrow AB=\sqrt{BH\cdot BC}\)
\(\Rightarrow AB=\sqrt{10\cdot52}=\sqrt{520}=2\sqrt{130}\left(cm\right)\)
Mà: \(\left|\overrightarrow{AB}\right|=AB\)
\(\Rightarrow\left|\overrightarrow{AB}\right|=2\sqrt{130}\left(cm\right)\)
ΔABC đều có AH là đường cao
nên \(AH=\dfrac{AB\cdot\sqrt{3}}{2}=\dfrac{2a\cdot\sqrt{3}}{2}=a\sqrt{3}\)
=>\(\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)
Xét tam giác ABC đều có đường cao AH ta có:
\(\Rightarrow BH=HC=\dfrac{BC}{2}=\dfrac{2a}{2}=a\)
Mà: \(AH=\sqrt{AB^2-BH^2}=\sqrt{\left(2a\right)^2-a^2}\)
\(\Rightarrow AH=\sqrt{4a^2-a^2}=a\sqrt{3}\)
\(\Rightarrow\left|\overrightarrow{AH}\right|=AH=a\sqrt{3}\)
AB^2=BH*BC
=>BH(BH+9)=20^2=400
=>BH^2+9BH-400=0
=>(BH+25)(BH-16)=0
=>BH=16cm
AH=căn BH*CH=12(cm)
Ta có :
\(BC^2=AB^2+AC^2\left(Pitago\right)\)
\(\Leftrightarrow BC^2=\dfrac{4}{9}BC^2+AC^2\)
\(\Leftrightarrow BC^2-\dfrac{4}{9}BC^2=AC^2\)
\(\Leftrightarrow\dfrac{5}{9}BC^2=AC^2\)
\(\Leftrightarrow BC^2=\dfrac{9}{5}AC^2=\dfrac{9}{5}.\left(12a\right)^2\)
\(\Leftrightarrow\left|\overrightarrow{BC}\right|=BC=\dfrac{3}{\sqrt[]{5}}.12a=\dfrac{36a\sqrt[]{5}}{5}\)
\(\Rightarrow\left|\overrightarrow{AB}\right|=AB=\dfrac{2}{3}.\dfrac{36a\sqrt[]{5}}{5}=\dfrac{24a\sqrt[]{5}}{5}\)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
Xét ΔABC ta có
\(BC^2=\left(10a\right)^2=100a^2\)
\(AB^2+AC^2=\left(6a\right)^2+\left(8a\right)^2=100a^2\)
Từ (1) và (2) \(BC^2=AB^2+AC^2\)
Nên ΔABC vuông tại A
Xét ΔABC ta có:
\(AH\cdot BC=AB\cdot AC\)
\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{8a\cdot6a}{10a}=\dfrac{48a^2}{10a}=4,8a\)
\(\Rightarrow\left|\overrightarrow{AH}\right|=AH=4,8a\)