Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc EMN=góc EMH+góc NMH
=góc EHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc EMN=góc EMH+góc NMH
=góc EHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)
góc INM=góc INH+góc MNH
=góc IHN+góc MAH
=góc BAH+góc HBA=90 độ
=>MN là tiếp tuyến của (I)
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>AC=căn 16=4
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=12/5=2,4
b: Ta có: ΔBAE cân tại B
mà BC là đường cao
nên BC là phân giác của góc ABE
Xét ΔBAC và ΔBEC có
BA=BE
\(\widehat{ABC}=\widehat{EBC}\)
BC chung
Do đó: ΔBAC=ΔBEC
=>\(\widehat{BAC}=\widehat{BEC}\)
=>\(\widehat{BEC}=90^0\)
=>CE\(\perp\)EB tại E
Xét (B) có
BE là bán kính
CE vuông góc BE tại E
Do đó: CE là tiếp tuyến của (B;BA)
ΔCBA=ΔCBE
=>CA=CE
mà CA=4
nên CE=4
a: Xét (E) có
EH là bán kính
AH vuông góc EH tại H
Do đó: AH là tiếp tuyến của (E)
b: Xét (E) co
ΔHMB nội tiếp
HB là đường kính
Do dó: ΔHMB vuông tại M
Xét (I) có
ΔCNH nội tiếp
CH là đường kính
Do đó: ΔCNH vuông tại N
Xét tứ giácc AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật