K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
14 tháng 2 2021

A B C M P N H

Kẻ CH song song MP và H thuộc AB 

ta có 

\(\hept{\begin{cases}\frac{NB}{NC}=\frac{MB}{MH}\\\frac{PC}{PA}=\frac{MH}{MA}\end{cases}\Rightarrow\frac{MA}{MB}.\frac{NB}{NC}.\frac{PC}{PA}=}\frac{MA}{MB}.\frac{MB}{MH}.\frac{MH}{MA}=1\)vậy ta có dpcm

10 tháng 1 2020

ggthgcfnjhgkuyst

30 tháng 11 2019

Cho tam giác ABC vg tại AAco đg ttrung tuyến AM.Gọi D là trung điểm củ AB E là đ dối xứng vs M qua D.

a)c/m AEBM là hinhhình thoi

b)gọi I là ttung đ của AM.c/m EIC thẳng hàng

c)tam giác ABC ccó themthêm điều kiện gì thì AEBM là hình

Cụ thể như sau:

Vẽ ��,��MH,NK vuông góc ��BC thì thấy ngay �(���)=�(���)S(BMC)=S(BNC) (�S là diện tích hình)

Suy ra �(���)=�(���)S(AMC)=S(ANB) hay �(���)�(���)=�(���)�(���)S(ABC)S(AMC)​=S(ACB)S(ANB)​, nghĩa là có câu a.

Mà có câu a thì có câu b

a) Xét ΔABC có 

AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

BN là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

CP là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)

Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)