K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

18 tháng 10 2021

a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường

Do đó tứ giác BHCKBHCK là hình bình hành

 

b) Tứ giác BHCKBHCK là hình bình hành

⇒BK∥CH⇒BK∥CH

Mà CH⊥ABCH⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

 

c) Gọi J=BC∩HIJ=BC∩HI

Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B

⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^

⇒ˆIBC=ˆHBC⇒IBC^=HBC^

mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)

Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)

ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK

Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)

Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.

 

d) Tứ giác GHCKGHCK có GK∥HCGK∥HC

Do đó GHCKGHCK là hình thang

Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^

mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)

Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^

ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)

ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)

Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^

Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^

ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^

Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^

hay ˆCBA=ˆCABCBA^=CAB^

⇒ΔABC⇒ΔABC cân đỉnh CC

ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.

18 tháng 10 2021

Cảm ơn bạn

15 tháng 11 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

15 tháng 11 2021

b) Ta có: Tứ giác BHCK là hình bình hành.

=> HC//BK mà H thuộc FC (gt)

=> FC//BK(1)

FC vuông góc với AB(gt)(2)

Từ (1)(2) suy ra AB vuông góc với  BK

Tương tự:

Có: tứ giác BHCK là hbh(cmt)

=> BH//KC mà H thuộc EB(gt)

=> BE// KC mà BE vuông góc với AC=> KC vuông góc với  AC

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

5 tháng 8 2019

1/ Ttứ giác BHCE có HE giao CD tại trung điểm D của cả 2 đoạn

 ---> Hình bình hành

2/ Vì H là trực tâm tam giác ABC

--> HC vuông góc AB

mà HC // BE do t/c cạnh đối của hình bình hành

---> đpcm

5 tháng 8 2019

3/ Nối ID

Chứng minh được ID là đường trung bình tam giác AHE

---> ID vuông góc BC tại D, D là trung điểm BC

Gọi K là trung điểm AC

Chứng minh được IK lả đường trung bình của tam giác ACE

---> IK // CE

suy ra IK vuông góc AC tại trung điểm K của AC

Vậy.....