K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

Kẻ HD//AB,HE//ACHD//AB,HE//AC

−>AD=HE;AE=AH−>AD=HE;AE=AH

Theo BĐT trong tam giác :

AH<AE+HE=AE+ADAH<AE+HE=AE+AD

xét ΔHDCΔHDC vuông tại H :HC<DCHC<DC

ΔBHEΔBHE vuông tại H : HB<BEHB<BE

−>HA+HB+HC<AE+AD+BE+DC=AB+AC−>HA+HB+HC<AE+AD+BE+DC=AB+AC

chứng minh tương tự:

HA+HB+HC<AB+BCHA+HB+HC<AB+BC 

HA+HB+HC<AC+BCHA+HB+HC<AC+BC

K/h có : 3(HA+HB+HC)<2(AB+AC+BC)3(HA+HB+HC)<2(AB+AC+BC)

-> HA+HB+HC<23(AB+AC+BC)HA+HB+HC<23(AB+AC+BC)

6 tháng 8 2019

Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo đề bài và bài làm tại link này nhé!

Vẽ các đường kính AM, BN, CP của (O). Dễ cm được BMCH, CNAH,APBH là các hình bình hành => AH = CN; BH = CM; CH = BM

=> AH + BH + CH = CN + CM + BM

Vì BC cố định nên CN không đổi => (AH + BH + CH) max khi (CM + BM) max. Ta sẽ cm rằng điều đó xảy ra khi M trùng điểm chính giữa cung nhỏ BC.

Thật vậy gọi Q là điểm chính giữa cung nhỏ BC. Kéo dài BQ đoạn QD = BQ = CQ, kéo dài BM đoạn ME = MC => BD = BQ + CQ = 2BQ và BE = BM + CM

Vì tg CQD cân tại Q => ^BDC = ^QCD = ^BQC/2

Tương tự tg CME cân tại M => ^BEC = ^MCE = ^BMC/2

Mà ^BMC = ^BQC => ^BEC = ^BDC => B,C,D,E cùng thuộc đường tròn đường kính BD => BE =< BD <=> BM + CM =< 2BQ => (BM + CM)

Max = 2BQ xảy ra khi E trùng D hay khi M trùng Q khi đó A là điểm chính giữa cung lớn BC

9 tháng 8 2019

Em tham khảo!

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath

11 tháng 10 2020

Gọi AD, BE, CF là ba đường cao của tam giác ABC cắt nhau tại H

1. Theo định lý Pythagoras, ta có: \(AB^2+HC^2=\left(AD^2+DB^2\right)+\left(HD^2+DC^2\right)=\left(AD^2+DC^2\right)+\left(DB^2+HD^2\right)=AC^2+HB^2\)(1)

\(BC^2+HA^2=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=\left(BE^2+AE^2\right)+\left(EC^2+HE^2\right)=AB^2+HC^2\)(2)

Từ (1) và (2) suy ra \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)(đpcm)

2. Ta có: \(BC.HA=BC.AD-BC.HD=2S-2S_{BHC}\)

Tương tự: \(AB.HC=2S-2S_{AHB}\)\(CA.HB=2S-2S_{AHC}\)

Suy ra \(AB.HC+BC.HA+CA.HB=6S-2S=4S\)(đpcm)