K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2021

a) EM // AC => ACB = EMB ( đồng vị) (đpcm)

b) Xét t/g EBM và t/g DMC có:

EMB = DCM (câu a)

BM = CM (gt)

MBE = CMD ( đồng vị)

Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm)

=> EM = CD (2 cạnh tương ứng)

c) Xét t/g EDM và t/g CMD có:

EM = CD (câu b)

EMD = CDM (so le trong)

DM là cạnh chung

Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm)

=> ED = CM (2 cạnh tương ứng)

d) Có: ED = CM (câu c)

Lại có: CM = BM (gt)

=> ED = CM = BM

=> ED = 1/2.(CM + BM) = 1/2 BC (đpcm

15 tháng 12 2016

khong biet

6 tháng 1 2021
Đợi 5p t giải cho

a) Ta có: ME//AC(gt)

nên \(\widehat{BME}=\widehat{BCA}\)(hai góc đồng vị)(đpcm)

d) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(gt)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AB(gt)

Do đó: D là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

E là trung điểm của AB(cmt)

D là trung điểm của AC(cmt)

Do đó: ED là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên ED//BC và \(ED=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)

21 tháng 12 2017

a) EM // AC => ACB = EMB ( đồng vị) (đpcm)

b) Xét t/g EBM và t/g DMC có:                                                                                                                                                                           EMB = DCM (câu a)                                                                                                                                                                                      BM = CM (gt)                                                                                                                                                                                           MBE = CMD ( đồng vị)

Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm) => EM = CD (2 cạnh tương ứng)

c) Xét t/g EDM và t/g CMD có: EM = CD (câu b) EMD = CDM (so le trong) DM là cạnh chung Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm) => ED = CM (2 cạnh tương ứng)

d) Có: ED = CM (câu c) Lại có: CM = BM (gt) => ED = CM = BM => ED = 1/2.(CM + BM) = 1/2 BC (đpcm) 

21 tháng 12 2016

xét tam giác AED và tam giác MDE có

DE là cạnh chung

góc AED= góc MDE ( 2 góc sltrong, AB//DM)

góc ADE= góc MED ( 2 hóc sltrong, ME//AC)

=> tam giác AED= tam giác MDE (g-c-g)

=> DAE= DME ( 2 góc t/ứng)

mà CDM= DAE ( 2 góc đvị, DM//AB)

nên CDM=DME

cm hai tam giác bằng nhau bình thường đc rồi bn nhé, hai tam giác EDM và DMC bằng nhau theo trường hợp g-c-g nha

21 tháng 12 2016

Xét tam giác AEDvaf tam giác MDE có

DE là cạnh chung

Góc AED=góc MDE(2 góc slt,ab//DM)

Góc ADE=góc AED(2 góc slt,ME//AC)

Suy ra tam giác AED=tam giác MED(g-c-g)

Suy ra DAE=DME(2 góc tương ứng)

mà CDM+DAE(2 góc đòng vị,DM//AB)

Nên CDM=DME

24 tháng 12 2023

Cho △ABC có AB = AC, AM là phân giác của ∠BAC (M ∈ BC):

a, Chứng minh △ABM = △ACM.

b, Chứng minh M là trung điểm của BC và AM ⊥ BC.

c, Kẻ MF ⊥ AB (F ∈ AB) và ME ⊥ AC (E ∈ AC). Chứng minh EF // BC.

Giải:

a,

- Xét 2 △ABM và △ACM, có:

     AB = AC (theo giả thiết)

     ∠CAM = ∠BAM (AM là phân giác của ∠BAC)

     AM_cạnh chung

=> △ABM = △ACM (c.g.c)

b,

- Có △ABM = △ACM (chứng minh trên)

=> MC = MB (2 cạnh tương ứng)

=> M là trung điểm của BC

=> ∠AMC = ∠AMB (2 góc tương ứng)

     mà 2 ∠AMC và ∠AMB kề bù

=> ∠AMC = ∠AMB = \(\dfrac{180^o}{2}\) = 90o

<=> AM ⊥ BC

c,

- Xét 2 △AEM và △AFM, có:

     ∠AEM = ∠AFM = 90o

     AM_cạnh chung

     ∠EAM = ∠FAM (AM là phân giác của ∠EAF)

=> △AEM = △AFM (cạnh huyền - góc nhọn)

=> AE = AF (2 cạnh tương ứng)

<=> △AEF cân tại A 

=> ∠AEF = \(\dfrac{180^o-\text{∠}EAF}{2}\) (số đo của một góc ở đáy trong △AEF cân tại A) (1)

Có △ABC cân tại A (AB = AC)

=> ∠ACB = \(\dfrac{180^o-\text{∠}BAC}{2}\) (số đo của một góc ở đáy trong ΔABC cân tại A) (2)

Từ (1) và (2) suy ra ∠AEF = ∠ACB

     mà ∠AEF và ∠ACB ở vị trí đồng vị

=> EF//BC

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

18 tháng 3 2022

a) xét TG AMB và TG AMC có:

AM chung

BM=MC

AB=AC

=>TG AMB =TG AMC(1)

b)từ (1)=>A1=A2

Xét TG AMD và TG AME có:

AM chung

D=E

A1=A2

=>TG AMD = TG AME

=>MD=ME