K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

khong biet

6 tháng 1 2021
Đợi 5p t giải cho
9 tháng 12 2021

a) EM // AC => ACB = EMB ( đồng vị) (đpcm)

b) Xét t/g EBM và t/g DMC có:

EMB = DCM (câu a)

BM = CM (gt)

MBE = CMD ( đồng vị)

Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm)

=> EM = CD (2 cạnh tương ứng)

c) Xét t/g EDM và t/g CMD có:

EM = CD (câu b)

EMD = CDM (so le trong)

DM là cạnh chung

Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm)

=> ED = CM (2 cạnh tương ứng)

d) Có: ED = CM (câu c)

Lại có: CM = BM (gt)

=> ED = CM = BM

=> ED = 1/2.(CM + BM) = 1/2 BC (đpcm

21 tháng 12 2017

a) EM // AC => ACB = EMB ( đồng vị) (đpcm)

b) Xét t/g EBM và t/g DMC có:                                                                                                                                                                           EMB = DCM (câu a)                                                                                                                                                                                      BM = CM (gt)                                                                                                                                                                                           MBE = CMD ( đồng vị)

Do đó, t/g EBM = t/g DMC (g.c.g) (đpcm) => EM = CD (2 cạnh tương ứng)

c) Xét t/g EDM và t/g CMD có: EM = CD (câu b) EMD = CDM (so le trong) DM là cạnh chung Do đó, t/g EDM = t/g CMD (c.g.c) (đpcm) => ED = CM (2 cạnh tương ứng)

d) Có: ED = CM (câu c) Lại có: CM = BM (gt) => ED = CM = BM => ED = 1/2.(CM + BM) = 1/2 BC (đpcm) 

21 tháng 12 2016

xét tam giác AED và tam giác MDE có

DE là cạnh chung

góc AED= góc MDE ( 2 góc sltrong, AB//DM)

góc ADE= góc MED ( 2 hóc sltrong, ME//AC)

=> tam giác AED= tam giác MDE (g-c-g)

=> DAE= DME ( 2 góc t/ứng)

mà CDM= DAE ( 2 góc đvị, DM//AB)

nên CDM=DME

cm hai tam giác bằng nhau bình thường đc rồi bn nhé, hai tam giác EDM và DMC bằng nhau theo trường hợp g-c-g nha

21 tháng 12 2016

Xét tam giác AEDvaf tam giác MDE có

DE là cạnh chung

Góc AED=góc MDE(2 góc slt,ab//DM)

Góc ADE=góc AED(2 góc slt,ME//AC)

Suy ra tam giác AED=tam giác MED(g-c-g)

Suy ra DAE=DME(2 góc tương ứng)

mà CDM+DAE(2 góc đòng vị,DM//AB)

Nên CDM=DME

25 tháng 6 2020

a. Áp dụng định lí Py-ta-go vào tam giác vuông ABC có ;

  \(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=3^2+4^2\)

\(\Rightarrow BC^2=25\)

\(\Rightarrow BC=5cm\)

Vậy BC = 5cm

b.Xét hai \(\Delta\)vuông AMD và \(\Delta\)vuông AMI có 

             \(\widehat{AMD}=\widehat{AMI}=90^O\)

             cạnh AM chung 

              MD  = MI [ gt ]

Do đó ; \(\Delta AMD=\Delta AMI\)[ cạnh góc vuông - cạnh góc vuông ]

c.Vì MI = MD mà BM\(\perp\)ID nên

 B thuộc đường trung trực của đoạn thẳng ID 

\(\Rightarrow\)BI = BD 

Vậy B cách đều 2 cạnh góc IAD 

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

18 tháng 3 2022

a) xét TG AMB và TG AMC có:

AM chung

BM=MC

AB=AC

=>TG AMB =TG AMC(1)

b)từ (1)=>A1=A2

Xét TG AMD và TG AME có:

AM chung

D=E

A1=A2

=>TG AMD = TG AME

=>MD=ME