Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^o+60^o=150^o\)
Ta có
AB=AC (tg ABC cân)
AE=AC (Tg ACE là tg đều)
=> AB=AE => tam giác ABE cân tại A
\(\Rightarrow\widehat{ABE}=\widehat{AEB}=\frac{\left(180^o-\widehat{BAE}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)
Xét tg cân ABD ta có
\(\widehat{ABD}=\widehat{BAD}=\frac{\left(180^o-\widehat{ADB}\right)}{2}=\frac{180^o-150^o}{2}=15^o\)
Suy ra từ B có 2 đoạn thẳng BE bà BD cùng tạo với AB 1 góc 15 độ => BD trùng BE nên B; D; E thẳng hàng
a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)
Xét \(\Delta\)ABI và \(\Delta\)BEC có :
AI = BC(gt)
\(\widehat{IAB}=\widehat{EBC}\)(cmt)
AB = BE(tam giác ABE vuông cân tại B)
=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)
b) \(\Delta\)ABI = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)
\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)
Gọi giao điểm của CE với AB là M
Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)
Do đó \(CE\perp BI\)
Gọi giao điểm của BF và AC là N
Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)
=> BF vuông góc với CI
c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy