K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có

BH chung

\(\widehat{ABH}=\widehat{DBH}\)

Do đó: ΔBAH=ΔBDH

b: ΔBAH=ΔBDH

=>BA=BD và HA=HD

ta có:BA=BD

=>B nằm trên đường trung trực của AD(1)

ta có: HA=HD

=>H nằm trên đường trung trực của AD(2)

Từ (1),(2) suy ra BH là đường trung trực của AD
d: Gọi M là giao điểm của CK với BA

Xét ΔBMC có

BK,CA là các đường cao

BK cắt CA tại H

Do đó: H là trực tâm của ΔBMC

=>MH\(\perp\)BC

mà HD\(\perp\)BC

nên M,H,D thẳng hàng

=>BA,DH,CK đồng quy

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC
góc A chung

=>ΔABH=ΔACK

b: góc KBC+góc ICB=90 độ

góc IBC+góc HCB=90 độ

mà góc KBC=góc HCB

nên góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

25 tháng 12 2021

a: Xét ΔABH và ΔKBH có

BH chung

\(\widehat{ABH}=\widehat{KBH}\)

BA=BK

Do đó: ΔABH=ΔKBH

a) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BH chung

\(\widehat{ABH}=\widehat{DBH}\)(BH là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔBAH=ΔBDH(cạnh huyền-góc nhọn)

b) Ta có: ΔBAH=ΔBDH(cmt)

nên BA=BD(hai cạnh tương ứng) và HA=HD(Hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(1)

Ta có: HA=HD(cmt)

nên H nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra BH là đường trung trực của AD

1 tháng 8 2021

Thank bạn nhiều ạ,bạn biết làm câu c ko ạ 😥

Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???

 

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

11 tháng 5 2023

Bạn ơi cho hỏi là Ak/Ab = AH/Ac là sao ạ

11 tháng 5 2020

a, Gọi D vuông góc với phân giác của BAC tại điểm O

Xét △ADH và △ADK cùng vuông tại D

Có: HAD = KAD (gt)

=> △ADH = △ADK (cgv-gnk)

=> AH = AK (2 cạnh tương ứng)

=> △AHK cân tại A

b, Vẽ BI // CK (I  HK) 

=> AKH = BIH (2 góc đồng vị)

Mà AHK = AKH (△AHK cân tại A)

=> BIH = AHK 

=> BIH = BHI

=> △BHI cân tại B

=> BH = BI 

Xét △OBI và △OCK

Có: BOI = COK (2 góc đối đỉnh)

        OB = OC (gt)

       OBI = OCK (BI // CK)

=> △OBI = △OCK (g.c.g)

=> BI = CK (2 cạnh tương ứng)

Mà BH = BI (cmt)

=> BH = CK

c, Ta có: AH = AB + BH , AK = AC - KC

=> AH + AK = AB + BH + AC - KC

=> AH + AH = (AB + AC) + (BH - KC)    (AK = AH)

=> 2AH = AB + AC   (BH = KC => BH - KC = 0)

=> AH = (AB + AC) : 2 = (9 + 12) : 2 = 10,5 (cm)

=> BH = AH - AB = 10,5 - 9 = 1,5 (cm)

a) Xét ΔBHC vuông tại H và ΔCKB vuông tại K có

CB chung

\(\widehat{BCH}=\widehat{CBK}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBHC=ΔCKB(cạnh huyền-góc nhọn)

b) Ta có: ΔBHC=ΔCKB(cmt)

nên HC=KB(hai cạnh tương ứng)

Ta có: AK+KB=AB(K nằm giữa A và B)

AH+HC=AC(H nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và KB=HC(cmt)

nên AK=AH

Xét ΔAKH có AK=AH(cmt)

nên ΔAKH cân tại A(Định nghĩa tam giác cân)

c) Ta có: ΔAKH cân tại A(cmt)

nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(Dấu hiệu nhận biết hai đường thẳng song song)

d) Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)

nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)

hay \(\widehat{KBO}=\widehat{HCO}\)

Xét ΔKBO vuông tại K và ΔHCO vuông tại H có

KB=HC(cmt)

\(\widehat{KBO}=\widehat{HCO}\)(cmt)

Do đó: ΔKBO=ΔHCO(cạnh góc vuông-góc nhọn kề)

nên OB=OC(hai cạnh tương ứng)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (3), (4) và (5) suy ra A,O,M thẳng hàng(đpcm)

4 tháng 2 2021

tham khảo nha

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>AH=AK

c: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co

AI chung

AH=AK

Do đó: ΔAKI=ΔAHI

=>góc KAI=góc HAI

=>AI là phân giác của góc BAC