K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

a, \(\tan B=\dfrac{4}{3}\Leftrightarrow\dfrac{AC}{AB}=\dfrac{4}{3}\Leftrightarrow AC=\dfrac{4}{3}AB\)

Áp dụng PTG: \(AB^2+AC^2=AB^2+\dfrac{16}{9}AB^2=\dfrac{25}{9}AB^2=BC^2=100\)

\(\Leftrightarrow AB^2=36\Leftrightarrow AB=6\left(cm\right)\\ \Leftrightarrow AC=6\cdot\dfrac{4}{3}=8\left(cm\right)\)

\(\tan B=\dfrac{4}{3}\approx\tan53^0\Leftrightarrow\widehat{B}\approx53^0\\ \widehat{C}=90^0-\widehat{B}\approx90^0-53^0=37^0\)

b, Vì AM là trung tuyến ứng ch BC nên \(AM=\dfrac{1}{2}BC=5\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{48}{10}=4,8\left(cm\right)\)

11 tháng 11 2021

Câu 15:

a: ĐKXĐ: x>=0; x<>1

16 tháng 6 2021

undefinedundefinedundefined

14 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot10=6^2=36\)

=>BH=36/10=3,6(cm)

ΔAHB vuông tại H

=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)

14 tháng 12 2023

a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.

 

Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:

 

\[AH = \frac{1}{2} \times BC\]

 

Trong trường hợp này:

 

\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]

 

Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:

 

\[\tan B = \frac{AH}{AB}\]

 

\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]

 

Trong trường hợp này:

 

\[\tan B = \frac{5}{6}\]

 

\[\angle B = \arctan\left(\frac{5}{6}\right)\]

 

Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).

 

b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:

 

\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]

 

Trong trường hợp này:

 

\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]

 

Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

25 tháng 12 2020

                                                 Giải

- Áp dụng 1 số hệ thức về cạnh và đường cao trong Δ vuông ABC ta có :

          \(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)

               \(\Rightarrow BC=16+9=25\left(cm\right)\)

- Áp dụng định lý Pytago trong  \(\Delta AHC\perp H\) ta có :

          \(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)

     \(\Rightarrow AB=\sqrt{25^2-20^2}=15\left(cm\right)\)

- Áp dụng tỉ số lượng giác của góc nhọn trong Δ vuông \(ABC\) ta có :

             + \(\tan C=\dfrac{AB}{AC}=\dfrac{15}{20}=\dfrac{3}{4}\)

           \(\Rightarrow\) Góc \(C\approx37\) độ

           \(\Rightarrow\) Góc CAH = Góc B = 53 độ

           \(\Rightarrow\) Góc BAH = 37 độ

       

 

       

3:

ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

21 tháng 12 2020

Áp dụng định lý Py ta go ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{3,6^2+4,8^2}=6\left(cm\right)\)

Ta có:

\(AH=\dfrac{AB.AC}{BC}=\dfrac{3,6.4,8}{6}=2,88\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{3,6^2-2,88^2}=2,16\left(cm\right)\)

Lại có: 

\(sinC=\dfrac{AH}{AC}=\dfrac{2,88}{4,8}=0,6\Rightarrow\widehat{C}\approx36,87\)

1 tháng 11 2021

undefined

undefined