K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

A H B C D E 1 2

a) AB là đường trung trực của HD \(\Rightarrow\) AD = AH.

AC là đường trung trực của HE \(\Rightarrow\) AE = AH.

Suy ra AD = AE. (1)

Tam giác AHD cân nên \(\widehat{HAD}=2\widehat{A_1}.\)

Tam giác AHE cân nên \(\widehat{HAE}=2\widehat{A_2}.\)

Suy ra \(\widehat{HAD}+\widehat{HAE}=2\widehat{A_1}+2\widehat{A_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)\)

\(\widehat{HAD}+\widehat{HAE}=2.90^o=180^o.\)

Do đó D, A, E thẳng hàng. (2)

Từ (1) và (2) suy ra A là trung điểm của DE. Vậy D đối xứng với E qua A.

b) Tam giác DHE có HA là đường trung tuyến và HA = \(\dfrac{1}{2}\) DE nên \(\Delta DHE\) vuông tại H.

c) Hãy chứng minh \(\widehat{ADB}=\widehat{AHB}=90^o,\widehat{AEC}=90^o\) để suy ra BDEC là hình thang vuông

d) Hãy chứng minh BD = BH, CE = CH.

18 tháng 11 2017

bạn giải cụ thể giúp mình câu c với b dc ko bn?

30 tháng 11 2021

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

14 tháng 12 2016

a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
suy ra AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
suy ra AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90* 
do đó ^DAB+^BAH+ ^HAC+^CAE=180* 
tức là D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đối xứng với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
nên tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra ^ADB=^AHB=90* 
tương tự có ^AEC=90* 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
nên BAEC là hình thang vuông. 

d) Do AB là đường trung trực của DH nên BD=BH (5) 
Do AC là đường trung trực của EH nên CE=CH (6) 
công vế với vế của (5) và (6) ta có BD+CE=BH+CH 
hay BD+CE=BC
đó nha bn

3 tháng 9 2017

a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
\(\Rightarrow\) AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
\(\Rightarrow\) AH=AE (2) 
Từ (1) và (2) \(\Rightarrow\) AD=AE (3) 
Mặt khác \(\widehat{DAB}=\widehat{BAH}\); \(\widehat{HAC}=\widehat{CAE}\) và \(\widehat{BAH}+\widehat{HAC}=90^0\)
Do đó \(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=180^0\)
Tức là D, A, E thẳng hàng (4) 
Từ (3) và (4) \(\Rightarrow\) D và E đối xứng với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= \(\frac{1}{2}\) DE 
Nên tam giác DHE vuông tại H. 


c) Tam giác ADB = tam giác AHB ( có chung chiều cao ) 
\(\Rightarrow\widehat{ADB}=\widehat{ABH}=90^0\) 
Tương tự có \(\widehat{AEC}=90^0\) 
\(\Rightarrow\) BD//CE (cùng vuông góc với DE) 
Nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
Nên BAEC là hình thang vuông. 

d) Do AB là đường trung trực của DH nên BD=BH (5) 
Do AC là đường trung trực của EH nên CE=CH (6) 
Cộng vế với vế của (5) và (6) ta có BD+CE=BH+CH 
Hay BD+CE=BC

12 tháng 12 2015

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o 
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o 
=> D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=> tam giác DHE vuông tại H. 


c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BAEC là hình thang vuông. 

12 tháng 12 2015

 a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o 
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4) 
Từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=>  tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o 
tương tự ta có góc AEC=90o 
=> BD//CE (cùng vuông góc với DE) 
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BDEC là hình thang vuông. 

15 tháng 10 2023

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

b: E đối xứng A qua BC

=>AE vuông góc BC tại trung điểm của AE

=>AE vuông góc BC tại H và H là trung điểm của AE

Xét ΔAED có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình

=>HM//ED

=>ED vuông góc EA

=>ΔAED vuông tại E

c: Xét ΔCAE có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCAE cân tại C

=>CA=CE

mà BD=AC(ABDC là hình bình hành)

nên CE=BD

Xét tứ giác BCDE có

BC//DE

nên BCDE là hình thang

Hình thang BCDE có BD=CE

nên BCDE là hình thang cân

31 tháng 8 2019

Giải bài 89 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Ta có MB = MC, DB = DA

⇒ MD là đường trung bình của ΔABC

⇒ MD // AC

Mà AC ⊥ AB

⇒ MD ⊥ AB.

Mà D là trung điểm ME

⇒ AB là đường trung trực của ME

⇒ E đối xứng với M qua AB.

b) + MD là đường trung bình của ΔABC

⇒ AC = 2MD.

E đối xứng với M qua D

⇒ D là trung điểm EM

⇒ EM = 2.MD

⇒ AC = EM.

Lại có AC // EM

⇒ Tứ giác AEMC là hình bình hành.

+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.

Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.

c) Ta có: BC = 4cm ⇒ BM = 2cm

Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm

d)- Cách 1:

Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC

Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.

- Cách 2:

Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM

⇔ ΔABC có trung tuyến AM là đường cao

⇔ ΔABC cân tại A.

Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.

27 tháng 8

tại sao AC //EM vậy ạ ?

18 tháng 12 2020

B A C M D E

18 tháng 12 2020

A, Xét tứ giác ABCD có

MB=MC=1/2BC(M là trung điểm BC-gt)

MD=MA=1/2AD( M là trung điểm AD-gt)

mà AD cắt BC tại M

->ABCD là hbh

Ta có ABCD là hình bh ( cmt)

mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)

-> ABCD là hcn(Đpcm)

B, Gọi I là giao điêm của AB và EM 

Ta có góc BIM=90 độ( do M đối E qua AB-gt)

          góc BAC = 90 độ( tam giác ABC vuông tại A-gt)

 mà hai góc vị trí đồng vị

-> IM song song AC

Xét tam giác  BAC có

M là trung điểm BC(gt)

IM song song AC( cmt)

-> I là trung điểm AB

Ta có

IA=IB=1/2AB( I là trung điểm AB-cmt)

IE=IM=1/2EM(M đối E qua AB-gt)

mà EM cắt AB tại I

-> EAMB là hình bình hành

Mà AB vuông góc EM ( M đối E qua AB-gt)

-> EAMB là hình thoi( đpcm)

Xong rùi nha bnoaoa