Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : BD=CE (đề bài)
mà AB=AD+BD; AC=AE+CE; AB=AC (Δ ABC cân tại A)
⇒ AD=AE
⇒ Δ ADE là Δ cân tại A
⇒ Góc ADE = Góc AED
\(\Rightarrow\widehat{DAE}+\widehat{2ADE}=180^O\)
mà \(\widehat{BAC}+\widehat{2ABC}=180^O\) (Δ ABC cân tại A)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\) ở vị trí đồng vị
Tương tự ta CM \(\widehat{AED}=\widehat{ACB}\) cũng ở vị trí đồng vị
\(\Rightarrow DE//BC\)
b) Xét Δ ABE và Δ ACD ta có :
AB=AC (Δ ABC cân tại A)
Góc A chung
AD=AE (cmt)
⇒ Δ ABE = Δ ACD (cạnh, góc, cạnh)
c) Ta có DE song song BC (cmt)
mà Góc DBC = Góc ECA (Δ ABC cân tại A)
⇒ BDEC là hình thang cân
Xét Δ BID và Δ CIE ta có :
\(\widehat{BDC}=\widehat{DCE}\) (đồng vị)
BD=CE (đề bàI)
BE=CD (BDEC là hình thang cân)
⇒ Δ BID = Δ CIE (cạnh, góc, cạnh)
d) Ta có: AD=AE (cmt)
mà DI=IE (Δ BID = Δ CIE)
⇒ AI là đường trung trực của DE
mà Δ ADE cân tại A (cmt)
⇒ AI là tia phân giác góc BAC
e) Ta có : Δ ABC cân tại A (đề bài)
mà AI là tia phân giác góc BAC (cmt)
⇒ AI là đường cao
⇒ AI vuông góc BC.
Sửa đề: Lấy E thuộc BC sao cho BE=BA
a: Chứng minh ΔBAD=ΔBED
Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
=>ΔDEC vuông tại E
c: Sửa đề: Tia BA cắt ED tại F
Ta có: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
a, C/m : BD=BE
Xét : tgEBI và tgBID
Có : B góc chung
BI cạnh chụng
E=D=900 (vuông góc)
=>tgEBI=tgBID (gcg)
=>BD=BE
b,C/M :tgAET=tgCDI
Xét : tgAEI và tgCID
có : C1=C2 (đđ)
D=E=90(vuông góc)
Mà :D=E và C1=C2
=> A1=C1
=>tgAEI=tgCID
c, C/M:ED//AC
Xét : tgEID và tgCIA
Có : góc EID=góc AIC
xog tu tim ý để chug bag nhau nhé
nho **** đó
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BD=CE
BC chung
Do đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC