K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow AC^2=3^2+4^2=25\)

hay AC=5(cm)

Xét ΔABC vuông tại B có 

\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{4}{5};\cos\widehat{A}=\dfrac{AB}{AC}=\dfrac{3}{5};\)

\(\tan\widehat{A}=\dfrac{BC}{BA}=\dfrac{4}{3};\cot\widehat{C}=\dfrac{BA}{BC}=\dfrac{3}{4}\)

23 tháng 9 2022

Áp dụng ĐLPTG, ta có:

AC²=AB²+BC²

<=>AC²=3²+4²=25

<=>AC=5(cm)

Xét tam giác ABC vuông tại B ta có:

Sin A=4/5     cos A=3/5    tg A=3/4      cost A=4/3

 

23 tháng 8 2021

hình đơn giản bạn tự vẽ:)

Áp dụng định lý Pytagoras ta có : BC2 = AB2 + AC2 = 32 + 42 = 25 => BC = 5cm

Ta có : \(\sin B=\frac{AC}{BC}=\frac{4}{5};\cos B=\frac{AB}{BC}=\frac{3}{5};\tan B=\frac{AC}{AB}=\frac{4}{3};\cot B=\frac{AB}{AC}=\frac{3}{4}\)

=> \(\sin C=\cos B=\frac{3}{5};\cos C=\sin B=\frac{4}{5};\tan C=\cot B=\frac{3}{4};\cot C=\tan B=\frac{4}{3}\)

20 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

17 tháng 7 2023

\(BC^2=AB^2+AC^2=36+64=100=10^2\)

\(\Rightarrow BC=10\left(cm\right)\)

\(SinB=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow SinC=Sin\left(90-B\right)=CosB=\dfrac{3}{5}\)

\(CosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\Rightarrow CosC=Cos\left(90-B\right)=SinB=\dfrac{4}{5}\)

\(tanB=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow tanC=tan\left(90-B\right)=CotB=\dfrac{3}{4}\)

\(CotB=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow cotC=cot\left(90-B\right)=tanB=\dfrac{4}{3}\)

17 tháng 1 2019

Sử dụng các tỉ số lượng giác, tính được:

sinB = 3 5 ; cosB =  4 5 ; tanB =  3 4 ; cotB =  4 3

=> sinA =  4 5 ; cosA =  3 5 ; tanA =  4 3 ; cotA =  3 4

Đổi AB=60mm=6cm

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

\(\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\\\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\\\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\\\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\\\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\end{matrix}\right.\)

28 tháng 6 2021

Không cần nói ạ.

13 tháng 9 2019

Tương tự câu 1

10 tháng 11 2018

HS tự làm

23 tháng 10 2021

AB=6(cm)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{3}{5}\)

\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{4}{3}\)

\(\tan\widehat{C}=\cot\widehat{B}=\dfrac{3}{4}\)

7 tháng 5 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AC = 0,9m = 9dm; BC = 1,2m = 12dm

Theo định lí Pitago, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vì ∠A và ∠B là hai góc phụ nhau nên suy ra:

Để học tốt Toán 9 | Giải bài tập Toán 9

(Ghi chú: Các bạn nên đổi đơn vị như trên để việc tính toán trở nên dễ dàng hơn.)

22 tháng 4 2021

Giúp mình điii😇