Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)do AE//AC(gt) , mà AC \(⊥\) AB( và tg ABC vg tại A) nên BE \(⊥\)AB => ^EBA=90
xét tg HBE và tg BAE có ; ^BHE=^ABE =90 ; ^E chung
=> tg HBE \(\infty\) tg BAE (g.g)
b) xét tg ABE vuông tại B có: AB^2 +BE^2 =AE^2
=> 4^2 +BE^2 =5^2 => BE=3 (vì BE>0)
=> Diện tích tg ABE là \(\frac{1}{2}.AB.BE=\frac{1}{2}.4.3=6\left(cm^2\right)\)
xét tg ABI có: AH \(⊥\) BI (gt) và H là t/đ của BI (vì HB=HI)
=> tg ABI cân tại A => AH là đg pg của ^BAI hay AE là pg của ^BAK
=> \(\frac{BE}{AB}=\frac{EK}{AK}\). Mà \(\frac{BE}{AB}=\frac{3}{4}\Rightarrow\frac{EK}{AK}=\frac{3}{4}\)
Có:CD là tia phân giác của góc ACB
BE là tia phân giác của góc ABC
mà góc ACB= góc ABC(tam giác ABC cân tại A)
\(\Rightarrow\frac{1}{2}\) góc C =\(\frac{1}{2}\) góc B
hay góc ACD=góc ABE
Xét tam giác ABE và tam giác ACD có:
góc A chung
AB=AC(tam giác ABC cân tại A)
góc ABE= góc ACD
=>tam giác ABE = tam giác ACD (g-c-g)
=>AE=AD(2 cạnh tương ứng)
=>tam giác AED cân tại A
=>góc AED=\(\frac{180-gócA}{2}\left(1\right)\)
Có:tam giác ABC cân tại A
=>góc ACB=\(\frac{180-gócA}{2}\left(2\right)\)
Từ(1) và (2)=>góc AED= góc ACB(=\(\frac{180-gócA}{2}\))
Mà hai góc này ở vị trí đồng vị
=>DE//BC
=>DECB là hình thang
mà BE=CD(tam giác ABE=tam giác ACD)
=>Hình thang DECB là hình thang cân.
b,Có:DE//BC(CMT)
=>góc EDC=góc DCB(2 góc so le trong)
mà góc ECD=góc DCB (CD là tia phân giác góc C)
=>góc EDC=góc ECD (=góc DCB)
=>tam giác EDC cân tại E
=>ED=EC
mà DB=EC(hai cạnh bên của hình thang cân )
=>ED=EC=DB
a)
ta có góc B= góc C( tam giác ABC cân tại A)
=> 1/2 góc B= 1/2 góc C
=> ABE=ACD=EBC=DCB
xét tam giác ABE và tam giác ACD có:
AB=AC(gt)
A(chung)
ABE=ACD( cmt)
=> tam giác ABE= tam giác ACD(g.c.g)
=> \(\begin{cases}AD=AE\\BE=CD\end{cases}\)
AD=AE=> tam giác ADE cân tại A
=> góc ADE=\(\frac{180^o-A}{2}\)
ta có tam giác ABC cân tại A
=> góc ABC=\(\frac{180^o-A}{2}\)
=> góc ABC= góc ADE
=> DE//BC(1)
ta có:AB=AC
AD=AE(cmt)
BD=AB-AD
EC=AC-AE
=> BD=EC(2)
từ (1)(2)=> tứ giác BDEC là hình thang cân
b)
theo câu a, ta có: tứ giác BDEC là hình thang cân
=> DB=EC(3)
theo câu a,ta có DE//BC=> DEB=EBC mà EBC=DBE(gt)
=> DEB=DBE=> tam giác DBE cân tại D
=> DE=DB(4)
từ (3)(4)=> DB=EC
DE=DB
=> DB=EC=DE(đfcm)
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
suy ra AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
suy ra AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90*
do đó ^DAB+^BAH+ ^HAC+^CAE=180*
tức là D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
nên tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra ^ADB=^AHB=90*
tương tự có ^AEC=90*
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
nên BAEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
công vế với vế của (5) và (6) ta có BD+CE=BH+CH
hay BD+CE=BC
k mik nha bn
Thanks bn nha .Con bai đâu tiên