K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

bo bot y =

3 tháng 4 2016

Gợi ý: \(P+1=\left(x+1\right)\left(y+1\right)\)

24 tháng 1 2016

Đặt  \(t=b^2+c^2-a^2\)  và  \(k=2bc\) , ta có:

\(x=\frac{t}{k};\) \(y=\frac{a^2-b^2+2bc-c^2}{b^2+2bc+c^2-a^2}=\frac{2bc-\left(b^2+c^2-a^2\right)}{2bc+\left(b^2+c^2-a^2\right)}=\frac{k-t}{k+t}\)

nên   \(P=\frac{t}{k}+\frac{k-t}{k+t}+\frac{t\left(k-t\right)}{k\left(k+t\right)}=\frac{t\left(k+t\right)+k\left(k-t\right)+t\left(k-t\right)}{k\left(k+t\right)}=\frac{t\left(k+t\right)+\left(k-t\right)\left(k+t\right)}{k\left(k+t\right)}=\frac{k\left(k+t\right)}{k\left(k+t\right)}=1\)

Vậy,   \(P=1\)

10 tháng 2 2019

Ta có

x+1=b2+c2−a22bc+1=b2+2bc+c2−a22bc=(b+c)2−a22bc

Suy ra

y(x+1)=a2−(b−c)2(b+c)2−a2.(b+c)2−a22bc=a2−(b−c)22bc

Do đó

12 tháng 3 2017

Làm như bạn trên hướng dẫn ấy:

Ta có: \(x+1=\frac{b^2+c^2-a^2}{2bc}+1=\frac{\left(b+c\right)^2-a^2}{2bc}\)

\(y+1=\frac{a^2-\left(b-c\right)^2}{\left(b+c\right)^2-a^2}+1=\frac{4bc}{\left(b+c\right)^2-a^2}\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=\frac{\left(b+c\right)^2-a^2}{2bc}.\frac{4bc}{\left(b+c\right)^2-a^2}=2\)

\(\Rightarrow P=\left(x+1\right)\left(y+x\right)-1=2-1=1\)

10 tháng 3 2017

Bạn tính x+1 và y+1 

Rồi nhân vào sẽ ra kết quả là 1

k cho mình nha!

18 tháng 11 2016

Lần sau đăng từng bài thôi bạn nhé :)

Đề đúng đây chứ ?

\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3\left[\left(x^2+y^2+2xy\right)-2xy\right]-2\left[\left(x^3+3x^2y+3xy^2+y^3\right)-3xy\left(x+y\right)\right]\)

\(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)

Thay \(x+y=1;\)có :

\(=3\left(1-2xy\right)-2\left(1-3xy\right)\)

\(=3-6xy-2+6xy=3-2=1\)

Vậy ...

18 tháng 11 2016

\(\frac{\left(a-b+c\right)^2}{4}+\frac{\left(a+b-c\right)^2}{4}+\frac{\left(-a+b+c\right)^2}{4}\)

\(=\frac{\left(a+b+c-2b\right)^2}{4}+\frac{\left(a+b+c-2c\right)^2}{4}+\frac{\left(a+b+c-2a\right)^2}{4}\)

\(=\frac{\left(4m-2b\right)^2}{4}+\frac{\left(4m-2c\right)^2}{4}+\frac{\left(4m-2a\right)^2}{4}\)

\(=\frac{16m^2+4b^2-16bm}{4}+\frac{16m^2+4c^2-16cm}{4}+\frac{16m^2+4a^2-16am}{4}\)

\(=4m^2+b^2-4bm+4m^2+c^2-4cm+4m^2+a^2-4am\)

\(=12m^2+b^2+c^2+a^2-4m\left(a+b+c\right)\)

\(=12m^2+b^2+c^2+a^2-4m\left(4m\right)\)

\(=a^2+b^2+c^2-4m^2\)

Chắc hết rồi nhỉ :/