Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-8x^2+23x+3=0\)
\(\Leftrightarrow8x^2-23x-3=0\)
\(\Leftrightarrow8x^2+x-24x-3=0\)
\(\Leftrightarrow x\left(8x+1\right)-3\left(8x+1\right)=0\)
\(\Leftrightarrow\left(8x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=-1\\x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{8}\\x=3\end{cases}}}\)
Vậy \(x\in\left\{-\frac{1}{8};3\right\}\)
\(\frac{x}{x+1}-\frac{2x-3}{x-1}=\frac{2x+3}{x^2-1}\) ĐKXĐ: x ≠ 1; x ≠ -1
⇔x(x - 1) - (2x - 3)(x + 1) = 2x + 3
⇔ x2 - x - 2x2 + 3x - 2x + 3 = 2x + 3
⇔ -x2 - 2x = 0
⇔ -x(x + 2) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) (TM)
Vậy nghiệm của pt là x = 0; x = -2
ĐKXĐ: x≠1; x≠-1
Ta có: \(\frac{x}{x+1}-\frac{2x-3}{x-1}=\frac{2x+3}{x^2-1}\)
\(\Leftrightarrow\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x+3}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x^2-x-\left(2x^2+2x-3x-3\right)-\left(2x+3\right)=0\)
\(\Leftrightarrow x^2-x-2x^2+x+3-2x-3=0\)
\(\Leftrightarrow-x^2-2x=0\)
\(\Leftrightarrow-x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: x∈{0;-2}
Lần sau đặt câu hỏi dưới dạng công thức như trên nhé!
\( a) - 10{x^2} - 28x + 6 = 0\\ \Leftrightarrow 5{x^2} + 14x - 3 = 0\\ \Leftrightarrow 5{x^2} + 15x - x - 3 = 0\\ \Leftrightarrow 5x\left( {x + 3} \right) - \left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {x + 3} \right)\left( {5x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = - 3\\ x = \dfrac{1}{5} \end{array} \right.\\ b)3{x^2} + 3x - 6 = 0\\ \Leftrightarrow {x^2} + x - 2 = 0\\ PTVN\\ c){x^2} + 10x + 25 = 0\\ \Leftrightarrow {\left( {x + 5} \right)^2} = 0\\ \Leftrightarrow x + 5 = 0\\ \Leftrightarrow x = - 5 \)
\(a.-10x^2-28x+6=0\\\Leftrightarrow -10\left(x^2+\frac{14}{5}x-\frac{3}{5}\right)=0\\\Leftrightarrow x^2+\frac{14}{5}x-\frac{3}{5}=0\\\Leftrightarrow x^2-\frac{1}{5}x+3x-\frac{3}{5}=0\\\Leftrightarrow x\left(x-\frac{1}{5}\right)+3\left(x-\frac{1}{5}\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-\frac{1}{5}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+3=0\\x-\frac{1}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-3;\frac{1}{5}\right\}\)
a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)
\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)
\(=x^2+2xy^3-5xy^2-8z+6xy\)
b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(2x-y\right)\left(2x+y\right)\)
\(=\left(2x\right)^2-y^2\)
\(=4x^2-y^2\)
d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)
\(=6xy+15x-2y^2-5y-64xy\)
\(=-58xy+15x-2y^2-5y\)
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
a: 2x^2y-50xy=2xy(x-25)
b: 5x^2-10x=5x(x-2)
c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)
d: \(x^2-xy+x=x\left(x-y+1\right)\)
e: x(x-y)-2(y-x)
=x(x-y)+2(x-y)
=(x-y)(x+2)
f: 4x^2-4xy-8y^2
=4(x^2-xy-2y^2)
=4(x^2-2xy+xy-2y^2)
=4[x(x-2y)+y(x-2y)]
=4(x-2y)(x+y)
f1: x^2ỹ-y^2+y
=(x-y)(x+y)+(x+y)
=(x+y)(x-y+1)