Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
Áp dụng bđt AM-GM ta có:
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}\ge z\)
Cộng từng vế các bđt trên ta được:
\(P+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy Min P=1 \(\Leftrightarrow x=y=z=1\)
*Tìm Max:
Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)
Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)
\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\) (đúng)
Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.
*Tìm min:
Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)
\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )
Tương tự hai BĐT còn lại và cộng theo vế:
\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
huhuhu em mới học lớp 6 thui mà sao lại nhờ em
xin lỗi nhak em ko giúp được đâu tì đứa khác giải giúp đi nhé
\(B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT cô si:
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)
CMTT: \(\frac{y^2}{y+z}+\frac{y+z}{4}\ge y\)
\(\frac{z^2}{x+z}+\frac{x+z}{4}\ge z\)
Cộng vế với vế ta được:
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}+\frac{x+y}{4}+\frac{y+z}{4}+\frac{x+z}{4}\ge x+y+z\)
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge4-\frac{2.\left(x+y+z\right)}{4}=4-2=2\)
\(B\ge2\)
Dấu = xảy ra \(\Leftrightarrow x=y=z=\frac{4}{3}\)
Ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)
\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)
Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??
Áp dụng BĐT Cauchy-Schwarz: \(\left(\frac{1}{2^2}+\frac{1}{\left(\sqrt{6}\right)^2}+\frac{1}{\left(\sqrt{3}\right)^2}\right)\left(\left(2x\right)^2+\left(y\sqrt{6}\right)^2+\left(z\sqrt{3}\right)^2\right)\ge\)
\(\left(\frac{1}{2}.2x+\frac{1}{\sqrt{6}}.y\sqrt{6}+\frac{1}{\sqrt{3}}.z\sqrt{3}\right)^2=\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4x^2+6y^2+3z^2\right)\ge9\)
\(\Leftrightarrow\frac{3}{4}A\ge9\Leftrightarrow A\ge12\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=6y=3z\\x+y+z=3\end{cases}\Leftrightarrow x=1,y=\frac{2}{3},z=\frac{4}{3}}\)
Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)(Dấu "=" xảy ra <=> \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}\))
CM bđt đúng: Áp dụng bđt buniacopski
\(\left[\left(\frac{x_1}{\sqrt{y_1}}\right)^2+\left(\frac{x_2}{\sqrt{y_2}}\right)+\left(\frac{x_3}{\sqrt{y_3}}\right)\right]\left[\left(\sqrt{y_1}\right)^2+\left(\sqrt{y_2}\right)^2+\left(\sqrt{y}\right)^2\right]\)
\(\ge\left(\frac{x_1}{\sqrt{y_1}}+\sqrt{y_1}+\frac{x_2}{\sqrt{y_2}}+\frac{x_3}{\sqrt{y_3}}+\sqrt{y_2}+\frac{x_3}{y_3}\right)^2\)
<=> \(\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3}{y_3}\right)\left(y_1+y_2+y_3\right)\) \(\ge\left(x_1+x_2+x_3\right)^2\)
Áp dụng bđt vaofA, ta có:
A = \(4x^2+6y^2+3z^2=\frac{x^2}{\frac{1}{4}}+\frac{y^2}{\frac{1}{6}}+\frac{z_2}{\frac{1}{3}}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=\frac{9}{\frac{3}{4}}=12\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{3}}\\x+y+z=3\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}\)
Vậy MinA = 12 <=> x = 1; y = 2/3; z = 4/3