Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị
*Tìm Max:
Do x,y,z là các số không âm và x + y + z = 3 nên \(0\le x,y,z\le3\)
Trước hết ta chứng minh:\(\sqrt{x^2-6x+26}\le\frac{\left(\sqrt{17}-\sqrt{26}\right)}{3}x+\sqrt{26}\) với \(0\le x\le3\)
\(\Leftrightarrow\frac{2}{9}\left(\sqrt{442}-17\right)x\left(3-x\right)\ge0\) (đúng)
Tương tự 2 bất đẳng thức còn lại và cộng theo vế thu được: \(M\le\sqrt{17}+2\sqrt{26}\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(3;0;0\right)\) và các hoán vị.
*Tìm min:
Ta có: \(\sqrt{x^2-6x+26}=\sqrt{\frac{1}{21}\left(2x-23\right)^2+\frac{17}{21}\left(x-1\right)^2}\)
\(\ge\sqrt{\frac{1}{21}\left(2x-23\right)^2}=\sqrt{\frac{1}{21}}\left|2x-23\right|=\sqrt{\frac{1}{21}}\left(23-2x\right)\) (vì \(2x-23\le2.3-23< 0\) )
Tương tự hai BĐT còn lại và cộng theo vế:
\(M\ge\sqrt{\frac{1}{21}}\left(69-2\left(x+y+z\right)\right)=3\sqrt{21}\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Cauchy-Schwarz: \(\left(\frac{1}{2^2}+\frac{1}{\left(\sqrt{6}\right)^2}+\frac{1}{\left(\sqrt{3}\right)^2}\right)\left(\left(2x\right)^2+\left(y\sqrt{6}\right)^2+\left(z\sqrt{3}\right)^2\right)\ge\)
\(\left(\frac{1}{2}.2x+\frac{1}{\sqrt{6}}.y\sqrt{6}+\frac{1}{\sqrt{3}}.z\sqrt{3}\right)^2=\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4x^2+6y^2+3z^2\right)\ge9\)
\(\Leftrightarrow\frac{3}{4}A\ge9\Leftrightarrow A\ge12\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=6y=3z\\x+y+z=3\end{cases}\Leftrightarrow x=1,y=\frac{2}{3},z=\frac{4}{3}}\)
Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)(Dấu "=" xảy ra <=> \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}\))
CM bđt đúng: Áp dụng bđt buniacopski
\(\left[\left(\frac{x_1}{\sqrt{y_1}}\right)^2+\left(\frac{x_2}{\sqrt{y_2}}\right)+\left(\frac{x_3}{\sqrt{y_3}}\right)\right]\left[\left(\sqrt{y_1}\right)^2+\left(\sqrt{y_2}\right)^2+\left(\sqrt{y}\right)^2\right]\)
\(\ge\left(\frac{x_1}{\sqrt{y_1}}+\sqrt{y_1}+\frac{x_2}{\sqrt{y_2}}+\frac{x_3}{\sqrt{y_3}}+\sqrt{y_2}+\frac{x_3}{y_3}\right)^2\)
<=> \(\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3}{y_3}\right)\left(y_1+y_2+y_3\right)\) \(\ge\left(x_1+x_2+x_3\right)^2\)
Áp dụng bđt vaofA, ta có:
A = \(4x^2+6y^2+3z^2=\frac{x^2}{\frac{1}{4}}+\frac{y^2}{\frac{1}{6}}+\frac{z_2}{\frac{1}{3}}\ge\frac{\left(x+y+z\right)^2}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=\frac{9}{\frac{3}{4}}=12\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{3}}\\x+y+z=3\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=\frac{2}{3}\\z=\frac{4}{3}\end{cases}}\)
Vậy MinA = 12 <=> x = 1; y = 2/3; z = 4/3
Ta có: \(6x^2+8xy+11y^2=2\left(x-y\right)^2+\left(2x+3y\right)^2\ge\left(2x+3y\right)^2\)
Tương tự: \(6y^2+8yz+11z^2\ge\left(2y+3z\right)^2\)
\(6z^2+8zx+11x^2\ge\left(2z+3x\right)^2\)
=> \(P\le\frac{x^2+3xy+y^2}{2x+3y}+\frac{y^2+3yz+z^2}{2y+3z}+\frac{z^2+3zx+x^2}{2z+3x}\)
=> \(4P\le\frac{4x^2+12xy+4y^2}{2x+3y}+\frac{4y^2+12yz+4z^2}{2y+3z}+\frac{4z^2+12zx+4x^2}{2z+3x}\)
\(=\frac{\left(2x+3y\right)^2-5y^2}{2x+3y}+\frac{\left(2y+3z\right)^2-5z^2}{2y+3z}+\frac{\left(2z+3x\right)^2-5x^2}{2z+3x}\)
\(=5\left(x+y+z\right)-5\left(\frac{y^2}{2x+3y}+\frac{z^2}{2y+3z}+\frac{x^2}{2z+3x}\right)\)
\(\le5\left(x+y+z\right)-5.\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=4\left(x+y+z\right)\)
Lại có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)với mọi x; y; z
=> \(4P\le4.\sqrt{9}=12\)
=> \(P\le3\)
Dấu "=" xảy ra <=> x = y = z = 1
Vậy max P = 3 đạt tại x = y = z = 1.
Lời giải:
Áp dụng BĐT AM-GM:
$3x+\frac{16}{3}\ge 8\sqrt{x}$
$4y+4\geq 8\sqrt{y}$
$6z+\frac{8}{3}\geq 8\sqrt{z}$
Cộng theo vế: $P+12\geq 8(\sqrt{x}+\sqrt{y}+\sqrt{z})=24$
$\Rightarrow P\geq 12$
Vậy $P_{\min}=12$ khi $(x,y,z)=(\frac{16}{9}, 1, \frac{4}{9})$
$P+
Áp dụng bđt AM-GM ta có:
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}\ge z\)
Cộng từng vế các bđt trên ta được:
\(P+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy Min P=1 \(\Leftrightarrow x=y=z=1\)
mình mới học lớp 7 thui mà
huhuhu em mới học lớp 6 thui mà sao lại nhờ em
xin lỗi nhak em ko giúp được đâu tì đứa khác giải giúp đi nhé