K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Bài 1 :

=-5(x^2+4/5x+19/25)

=-5(x^2+2x.2/5+4/25+3/5)

=-5(x+2/5)^2-3

Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3

Vậy Min là-3

12 tháng 7 2023

a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)

\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)

\(=x^2+2xy^3-5xy^2-8z+6xy\)

b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x\right)^2-y^2\)

\(=4x^2-y^2\)

d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)

\(=6xy+15x-2y^2-5y-64xy\)

\(=-58xy+15x-2y^2-5y\)

12 tháng 7 2023

Bạn xem lại đề bài nhé!

16 tháng 9 2019

\(x^2-3x-3y+2xy+2y^2-4=0\)

\(\Leftrightarrow\left(x+y+3\right)^2-9\left(x+y+3\right)+y^2+14=0\)

\(\Leftrightarrow P^2-9P+y^2+14=0\)

Ta có: \(0=P^2-9P+y^2+14\ge P^2-9P+14=\left(P-7\right)\left(P-2\right)\)

\(\Leftrightarrow2\le P\le7\)

Vậy...

P/s: Về cơ bản hướng làm là thế, nhưng khi tính toán + biến đổi có thể sai, bạn tự check lại.

16 tháng 9 2019

Dòng kế cuối là:\(\Rightarrow2\le P\le7\) nha!

26 tháng 11 2018

Sửa lại đề : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

Ta có : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)   \(=\) \(\frac{2x^2+3xy+y^2}{\left(x-y\right)\left(2x^2+3xy+y^2\right)}\)

                                                          \(=\frac{1}{x-y}\)      ( Chia cả tử và mẫu cho \(2x^2+3xy+y^2\))

                

                                                        

12 tháng 9 2015

=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0

còn lại thì e bó tay . canh 

12 tháng 9 2015

(x+2y)(x2-2xy+4y2)=0

<=>x3+(2y)3=0

<=>x3+8y3=0  (1)

(x-2y)(x2+2xy+4y2)=0

<=>x3-(2y)3=0

<=>x3-8y3=0  (2)

từ (1) và (2)=>x3+8y3-x3+8y3=0

<=>16y3=0

<=>y=0

thay y=0 vào (1) ta đc:

x3-0=0

<=>x3=0

<=>x=0

21 tháng 10 2020

a) 4x2 + y2 + 4xy + 4x + 2y + 3

= ( 4x2 + 4xy + y2 + 4x + 2y + 1 ) + 2

= [ ( 4x2 + 4xy + y2 ) + ( 4x + 2y ) + 1 ] + 2

= [ ( 2x + y )2 + 2( 2x + y ).1 + 12 ] + 2

= ( 2x + y + 1 )2 + 2 ≥ 2 ∀ x, y

Dấu "=" xảy ra <=> 2x + y + 1 = 0

                        <=> 2x = -y - 1

                        <=> x = \(\frac{-y-1}{2}\)

Vậy GTNN của biểu thức = 2 <=> x = \(\frac{-y-1}{2}\)

b) -x2 - y2 - 2xy 

= -( x2 + 2xy + y2 )

= -( x + y )2 ≤ 0 ∀ x, y

Dấu "=" xảy ra khi x = -y

Vậy GTLN của biểu thức = 0 <=> x = -y