Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow n-1-5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
b: \(\Leftrightarrow3n-3+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
Theo mình nghĩ X=2 ,Y=1 , vì thay vào 1+3 =4 chia hết cho 2, và 2+2=4 chia het cho 1 , hãy tin vao mình :)))
A-B=3x(x-y)-(y^2-x^2)
A-B=3x(x-y)+(x-y)(x+y)
A-B=(x-y)(4x+y). Vì x-y chia hết cho 7 nên (x-y)(4x+y) chia hết cho 7. Vậy A-B chia hết cho 7
A-B=3x(x-y)-(y2-x2)
=3x(x-y)-(y2+xy-xy-x2)
=3x(x-y)-[y(y+x)-x(y+x)]
=3x(x-y)+(x-y)(x+y)
=(x-y)(3x+y) luôn chia hết cho 7