Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/68409793765.html
Bạn tham khảo ở đây.
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
Lời giải:
Ta có: \(x+y+z=0\Rightarrow (x+y+z)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)=0\Leftrightarrow xy+yz+xz=\frac{-a^2}{2}\)
Để ý rằng:
\(x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)\)
\(=a^4-2[(xy+yz+xz)^2-2xyz(x+y+z)]\)
\(=a^4-2(xy+yz+xz)^2=a^4-2.\frac{a^4}{4}=\frac{a^4}{2}\)
Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?
\(x+y+z=0< =>x+y=-z=>\left(x+y\right)^2=\left(-z\right)^2.\)
\(< =>x^2+2xy+y^2=z^2< =>x^2+y^2-z^2=-2xy\)
\(< =>\left(x^2+y^2-z^2\right)=\left(-2xy\right)^2\)
\(< =>x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2=4x^2y^2\)
\(< =>x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)
\(< =>2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=\left(x^2+y^2+z^2\right)^2.\)
\(< =>x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2}{2}=\frac{a^4}{2}\)
Vậy \(x^4+y^4+z^4=\frac{a^4}{2}\)