K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 8

Do 8 chia hết cho 4 \(\Rightarrow8^{2008}⋮4\)

\(\Rightarrow8^{2008}=4k\)

\(\Rightarrow5^{8^{2008}}=5^{4k}=\left(5^4\right)^k=625^k\)

Mà \(625\equiv1\left(mod24\right)\Rightarrow625^k\equiv1\left(mod24\right)\)

\(\Rightarrow5^{8^{2008}}\equiv1\left(mod24\right)\)

\(\Rightarrow5^{8^{2008}}+23\equiv0\left(mod24\right)\)

Hay \(5^{8^{2008}}+23\) chia hết 24

mk nghĩ bn vào chtt đi chứ giải ra dài quá

Bài 2: 

a: \(5^{2008}+5^{2007}+5^{2006}\)

\(=5^{2006}\left(5^2+5+1\right)=5^{2006}\cdot31⋮31\)

b: \(8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

10 tháng 12 2023

\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)

\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+...-\left(3^{22}-3^{23}+3^{24}\right)\)

\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+...-3^{22}\left(1-3+3^2\right)\)

\(=7\left(3-3^4+...-3^{22}\right)⋮7\)

\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)

\(=\left(3-3^2+3^3-3^4\right)+\left(3^5-3^6+3^7-3^8\right)+...+\left(3^{21}-3^{22}+3^{23}-3^{24}\right)\)

\(=3\left(1-3+3^2-3^3\right)+3^5\left(1-3+3^2-3^3\right)+...+3^{21}\left(1-3+3^2-3^3\right)\)

\(=-20\cdot\left(3+3^5+...+3^{21}\right)\)

\(=-60\cdot\left(1+3^4+...+3^{20}\right)⋮60\)

\(C⋮60;C⋮7\)

mà ƯCLN(60;7)=1

nên C chia hết cho 60*7=420

Nỏ biết hỏi lắm hỏi cấy lò tôn

15 tháng 6 2015

A = 2 + 22 + 23 + ... + 22007 + 22008

= 2(20 + 21 + 22 + ... + 22006 + 22007) chia hết cho 2

vì 2 chia hết cho 2

5 tháng 8 2017

bik lm chỉ vs

26 tháng 8 2015

a.    87 - 218 = 221 - 218 = 217 ( 24 - 2) = 217 ( 16-2) = 217 * 14 chia het cho 14

b.    55 - 54 + 53 = 53 ( 52 - 5 + 1) = 53 * 21  chia het cho 7

con nhung bai lai ban tu giai nhe , con neu thac mac hoi ban

1 tháng 6 2018

- Vì n là số tự nhiên lẻ

=> 24n có tận cùng là 24

=> 24n + 1 có tận cùng là 24 + 1 = 25 

Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)

- Vì 24 : 23 = 1 (dư 1)

=> 24n : 23 cũng sẽ dư 1

=> 24n + 1 : 23 sẽ có dư là 2

=> 24n + 1 sẽ không chia hết cho 23  (2)

Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

a. Biểu thức $B$ không có GTLN bạn nhé. Chỉ có GTNN thôi.

b. 

$C=(3-3^2+3^3-3^4)+(3^5-3^6+3^7-3^8)+....+(3^{21}-3^{22}+3^{23}-3^{24})$

$=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+....+3^{20}(3-3^2+3^3-3^4)$

$=(3-3^2+3^3-3^4)(1+3^4+...+3^{20})=-60(1+3^4+...+3^{20})\vdots 60(*)$

Mặt khác:

$C=(3-3^2+3^3)-(3^4-3^5+3^6)+.....-(3^{22}-3^{23}+3^{24})$

$=3(1-3+3^2)-3^4(1-3+3^2)+...-3^{22}(1-3+3^2)$

$=(1-3+3^2)(3-3^4+...-3^{22})=7(3-3^4+...-3^{22})\vdots 7(**)$

Từ $(*); (**)$ mà $(7,60)=1$ nên $C\vdots (7.60)$ hay $C\vdots 420$

15 tháng 12 2022

cảm ơn bạn nhé^^