Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Ghi chú: Muốn chứng minh hai số là nghịch đảo của nhau, ta chứng minh tích của hai số bằng 1.)
\(2^{2019}\) luôn là lũy thừa của số chẵn nên luôn chẵn, đặt \(2^{2019}=2k\)
\(\Rightarrow a=2^{2k}+5=4^k+5\)
\(4\equiv1\left(mod3\right)\Rightarrow4^k\equiv1\left(mod3\right)\)
\(\Rightarrow4^k+5\equiv0\left(mod3\right)\)
Hay \(a⋮3\), mà \(a>3\) nên a là hợp số
Dạ thầy ơi, dạ thầy chỉ cho em cái phần mod này được không ạ? Dạ em chưa hiểu lắm ạ
ta có
\(A=111..1000..0+222..2+3=10^{2007}\left(1+10+..+10^{2004}\right)+2.\left(1+10+..+10^{2006}\right)+3\)
\(=10^{2007}.\frac{10^{2005}-1}{9}+2.\frac{10^{2007}-1}{9}+3=\frac{10^{2.2006}-10.10^{2006}+25}{9}=\left(\frac{10^{2006}-5}{3}\right)^2\)
rõ ràng Alà số tự nhiên nên \(\left(\frac{10^{2006}-5}{3}\right)\) là số tự nhiên, vậy ta có đpcm
Đặt \(a=\sqrt{2006}-\sqrt{2005};b=\sqrt{2006}+\sqrt{2005}\)
Ta có
\(a=\sqrt{2006}-\sqrt{2005}=\dfrac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\dfrac{1}{b}\)
\(\RightarrowĐfcm\)
Hằng đẳng thức a2 - b2 = (a - b).(a + b) <=> (a - b).(a + b) = a2 - b2
Ta có :
A = 3k + 2
B = 6q + 2 hoặc 6q + 5
6q + 2 có 6q chia hết cho 3 => 6q + 2 chia 3 dư 2
6q + 5 = 6q + 3 + 2 có 6q + 3 chia hết cho 3 => 6q + 3 + 2 chia 3 dư 2
Vậy A = B
Hai bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) bạn nhé
a)
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2^2-\sqrt{3}^2\)
\(=4-3\)
\(=1\)
b)
Hai số nghịch đảo nhau là 2 số có tích của chúng bằng 1
Ví dụ
\(\frac{a}{b}\) và \(\frac{b}{a}\) ( hai số nghịch đảo )
\(\frac{a}{b}.\frac{b}{a}=1\)
Ta có
\(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)\)
\(=\sqrt{2006}^2-\sqrt{2005}^2\)
\(=2006-2005\)
\(=1\)
=> Đpcm