K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Giả sử \(x,y,z\in Q,x=\frac{a}{b},b>0,y=\frac{c}{d},d>0,z=\frac{h}{g},g>0.\)

a) Nếu \(x=y\), tức là \(\frac{a}{b}=\frac{c}{d}\), thì ta suy ra \(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\left(1\right)\)

Xét \(x+z=\frac{a}{b}+\frac{h}{g}=\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}\left(2\right)\)

Thay kết quả \(\left(1\right)\) vào vế phải của \(\left(2\right)\) ta được:

\(x+z=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{c}{d}+\frac{h}{g}\Rightarrow x+z=y+z\)

b) Ngược lại, nếu \(x+z=y+z,\) tức là \(\frac{a}{b}+\frac{h}{g}=\frac{c}{d}+\frac{h}{g},\) thì ta suy ra

\(\frac{a.d.g}{b.d.g}+\frac{b.d.h}{b.d.g}=\frac{b.c.g}{b.d.g}+\frac{b.d.h}{b.d.g}\)

\(\Rightarrow\frac{a.d.g+b.d.h}{b.d.g}=\frac{b.c.g+b.d.h}{b.d.g}\)

\(\Rightarrow a.d.g+b.d.h=b.c.g+b.d.h\left(3\right)\)

Theo luật đơn giản ước của phép cộng các số nguyên, từ đẳng thức \(\left(3\right)\) ta có: \(a.d.g=b.c.g\). Do đó:

\(\frac{a.d.g}{b.d.g}=\frac{b.c.g}{b.d.g}\)

Suy ra \(\frac{a}{b}=\frac{c}{d}\)

 

9 tháng 11 2016

Ta có :

(+) \(x=y\)

\(\Rightarrow\begin{cases}x+z=x+z\\y+z=x+z\end{cases}\)

=> x+z=y+z

(+) x+z=y+z

\(\Rightarrow x+z-z=y+z-z\)

=> x = y

13 tháng 7 2017

Ta có :

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)

\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)

Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)

Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)

Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)

Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)

28 tháng 6 2016

Vì \(\frac{a}{b}\) < \(\frac{c}{d}\)  nên ad < bc    (1)

Xét tích : a(b+d) =  ab + ad     (2)

                b(a+c) = ba + bc        (3)

Từ (1);(2);(3) suy ra a(b+d) < b(a+c) do đó \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)      (4)

Tương tự ta có : \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)         (5)

Kết hợp (4);(5) ta được \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)   

hay x < z < y

16 tháng 6 2016

Vì \(\frac{a}{b}\)  < \(\frac{c}{d}\)  nên ad < bc     (1)

Xét tích 

a(b+d) = ab + ad       (2)

b(a+c)  = ba + bc        (3)

Từ (1),(2),(3) suy ra 

a(b+d) < b(a+c)  do đó :  \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)     (4)

Tương tự ta có \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)    (5)

Từ (4),(5) ta được : \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  

Hay x < z < y

24 tháng 8 2016

1/ a/ x = 1/2, y = -1

b/ x = -1/2 ; y = 1

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

24 tháng 8 2015

+)Vì x<y

Suy ra a/b<c/d

Suy ra a.b+a.d<b.c+b.a

Suy ra a.(b+d)<b.(c+a)

Suy ra a/b<c+a/b+d

Suy ra a/b<c+a/b+d<c/d

Suy ra x<z<y

15 tháng 7 2015

Bn đã hỏi 4 lần, ngày hôm nay 2 lần, 11 và 12 mỗi ngày 1 lần (mk nhìn vô là ko hỉu và cũng chưa học rờm rà như thế) :))