Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a chia hết cho 2 dư 1
=> a có dạng là 2n+1
b chia hết cho 2 dư 1
=> b có dang là 2m+1
=>a-b=2n+1-2m-1=2n-2m=2 (n-m) luôn chia hết cho 2
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=14+2^3\cdot14+...+2^{117}\cdot14\)
\(=14\cdot\left(1+2^3+...+2^{117}\right)⋮7\)
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=62+2^5\cdot62+...+2^{115}\cdot62\)
\(=62\cdot\left(1+2^5+...+2^{115}\right)⋮31\)
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=126+126\cdot2^6+...+126\cdot2^{114}\)
\(=126\cdot\left(1+2^6+...+2^{114}\right)⋮21\)