Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (14n+3,21n+4)=d (d thuộc N)
=>14n+3,21n+4 chia hết cho d =>3(14n+3)-2(21n+4)=1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau với mọi số tự nhiên
Giả sử rằng với n = k (k thuộc N) ta có 2k+1 và 6k+5 ko phải là 2 số nguyên tố cùng nhau, nghĩa là UCLN(2k+1;6k+5) = d (d > 1)
d là ước của 2k+1 và 6k+5 ---> d là ước của 6k+5 - 3.(2k+1) = 2 ---> d = 2 (vì d > 1)
Nhưng điều đó là vô lý vì 2 không thể là ước của 2k+1 và 6k+5 được
Do đó điều giả sử trên là sai ---> 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N.
Gọi d thuộc Ư(6n+5,4n+3)
=>6n+5 chia hết cho d ; 4n+3 chia hết cho d
=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d
=>(12n+10)-(12n+9) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
a) Giả sử \(2n+3;4n+8\) chưa nguyên tố cùng nhau
\(\Leftrightarrow2n+3;4n+8\)có ước chung là số nguyên tố
Gọi \(d=ƯC\left(2n+3;4n+8\right)\)
\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow2⋮d\)
Vì \(d\in N;2⋮d\Leftrightarrow d=1;2\)
+) \(d=2\Leftrightarrow2n+3⋮2\) (vô lí)
\(\Leftrightarrow d=1\)
\(\Leftrightarrow2n+3;4n+8\)nguyên tố cùng nhau với mọi n
Câu b tương tự
Chúc b hc tốt!
a)Gọi UCLN của 2n+3 và 4n+8 là d (d thuộc N*)
=>\(\hept{\begin{cases}2n+3\\4n+8\end{cases}}\)cùng chia hết cho d
=>(4n+8)-(2n+3) chia hết cho d
=>(4n+8)-2(2n+3) chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư của 2
=>\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)
Có 2n+3 chia hết cho d
Mà 2n+3 là số lẻ nên d không thể = 2 (ước của số lẻ không =2)
=>d=1
=>UCLN(2n+3;4n+8)=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
2n + 5 và 3n+ 7
=> Gợi UCLN của 2n+ 5 và 3n+ 7 là d
=> 2n+5 chia hết cho d
=> 3n+7 chai hết cho d
=> 3( 2n+5) chia hết cho d
=> 2( 3n+7) chia hết cho d
=> 6n + 15 chia hết cho d
=> 6n+ 14 chia hết cho d
=> 6n+ 15- 6n + 14 chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> UCLN ( 2n+5) và 3n+7 là 1
=> đpcm
Tick nhé
Gọi UCLN(2n + 5; 3n + 7) là d
=> 2n + 5 chia hết cho d => 3(2n + 5) chia hết cho d
3n + 7 chia hết cho d => 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=>UCLN(2n + 5; 3n + 7) = 1
Vậy...
p=6,7,8,9,...
31 la so nguyen to vay ta co:
(27+4)=31;(27+8)=35;35 ko phai so nguyen to;ma 31 la so nguyen to
1
gọi số cần tìm là p.dễ thấy p lẻ
=>p=a+2 và p=b-2
=>a=p-2 và b=p+2
vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3
với p-2=3=>p=5=7-2(chọn)
p=3=>p=1+2(loại)
p+2=3=>p=1(loại)
vậy p=5
2
vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3
theo giả thiết:
p3 = p2 + d = p1 + 2d (*)
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ)
đặt d = 2m, xét các trường hợp:
* m = 3k => d chia hết cho 6
* m = 3k + 1: khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 2
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt)
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1
* m = 3k + 2, khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 4
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt)
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.
3
ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.
mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ
=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6
4
vì p là SNT >3=>p=3k+1 hoặc p=3k+2
với p=3k+1=>p+8=3k+9 chia hết cho 3
với p=3k+2=>p+4=3k+6 ko phải là SNT
vậy p+8 là hợp số
5
vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3
vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3
=>8p+1 là hợp số
6.
Ta có: Xét:
+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)
+n=4k+2
=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)
+n=4k+3
=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)
⇔n=4
4.vì p là số nguyên tố >3
nên p có dạng 3k+1;3k+2
xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)
xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)
vậy p+8=(3k+1)+8=3k+9 chia hết cho 3
Vậy p+8 là hợp số
gọi d là (4n+7,3n+2)
ta có :
4n+7 chia hết cho d
3n+2 chia hết cho d
=>3(4n+7)-4(3n+2)=12n+21-12n-8=13
=>d=13=>hai số trên là 2 số nguyên tố cùng nhau( chắc sai hihi)
Gọi ƯCLN(4n+7,3n+2)=d
=>\(\hept{\begin{cases}4n+7⋮d\\3n+2⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+7\right)⋮d\\4\left(3n+2\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+21⋮d\\12n+8⋮d\end{cases}}\)
<=> 12n + 21 - 12n -8 \(⋮\)d
<=> 21 - 8 \(⋮\)d
<=> 13 \(⋮\)d
<=> d \(\in\)Ư(13)
<=> d \(\in\){1;13}
Vậy 4n + 7 và 3n + 2 có thể là 2 số nguyên tố cùng nhau hoặc ko phải 2 số nguyên tố cùng nhau
(chắc sai rồi):| đúng nhớ K