Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
Bài 2:
\(A=\frac{8^5(-5)^8+(-2)^5.10^9}{2^{16}.5^7+20^8}\) \(=\frac{(2^3)^5(-5)^8+(-2)^5.2^9.5^9}{2^{16}.5^7+(2^2.5)^8}\)
\(=\frac{2^{15}.5^8-2^5.2^9.5^9}{2^{16}.5^7+2^{16}.5^8}\)
\(=\frac{2^{14}.5^8(2-5)}{2^{16}.5^7(1+5)}\)
\(=\frac{5(-3)}{2^2.6}=\frac{-5}{8}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)
Thay vào:
\(\frac{5a+3b}{5a-3b}=\frac{5bt+3b}{5bt-3b}=\frac{b(5t+3)}{b(5t-3)}=\frac{5t+3}{5t-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dt+3d}{5dt-3d}=\frac{d(5t+3)}{d(5t-3)}=\frac{5t+3}{5t-3}\)
Do đó: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
Bài 4:
Ta có:
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^{97}(1+3+3^2+3^3)\)
\(=3.40+3^5.40+....+3^{97}.40\)
\(=120(1+3^4+....+3^{96})\vdots 120\)
Ta có đpcm.
\(A=5^5-5^4+5^3\)
\(\Rightarrow A=5^3\left(5^2-5^1+1\right)\)
\(\Rightarrow A=5^3\left(25-5+1\right)\)
\(\Rightarrow A=5^3.21=5^3.3.7⋮7\)
\(\Rightarrow dpcm\)
Ta có : \(\frac{a+5}{a-5}=\frac{b+6}{b-6}\Rightarrow\frac{b-6}{a-5}=\frac{b+6}{a+5}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{b-6}{a-5}=\frac{b+6}{a+5}=\frac{\left(b+6\right)-\left(b-6\right)}{\left(a+5\right)-\left(a-5\right)}=\frac{12}{10}=\frac{6}{5}\)
\(\Rightarrow5\left(b-6\right)=6\left(a-5\right)\Leftrightarrow5b-30=6a-30\Leftrightarrow5b=6a\Leftrightarrow\frac{a}{b}=\frac{5}{6}\)
Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:
S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)
=(5+52+53+54+55+56)(1+56+...+590)
Ta có
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126
→S⋮126
S⋮5.2=10
Vậy tận cùng là 0
Bài làm:
a) \(a^2-a=a\left(a-1\right)\)
Vì a là số nguyên
=> a ; a-1 là 2 số nguyên liên tiếp
Vì trong 2 số nguyên liên tiếp tồn tại 1 số chẵn ( chia hết cho 2)
=> a(a-1) chia hết cho 2
=> \(a^2-a⋮2\)
Sai sai nên sửa đề:
b) \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)
Vì đó là tích 3 số nguyên liên tiếp và trong 3 số đó luôn tồn tại 1 số chia hết cho 3
=> (a-1)a(a+1) chia hết cho 3
=> \(a^3-a⋮3\)
c) \(a^5-a=a\left(a^2-1\right)\left(a^2+1\right)=\left(a-1\right)a\left(a+1\right)\left[\left(a^2-4\right)+5\right]\)
\(=\left(a-1\right)a\left(a+1\right)\left[\left(a-2\right)\left(a+2\right)+5\right]\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)
Vì (a-2)(a-1)a(a+1)(a+2) là tích 5 số nguyên liên tiếp và trong 5 số đó luôn tồn tại 1 số chia hết cho 5
=> (a-2)(a-1)a(a+1)(a+2) chia hết cho 5
Mà 5(a-1)a(a+1) chia hết cho 5
=> \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
+) Ta có a2 - a = a( a - 1 )
Vì a , a - 1 là hai số nguyên liên tiếp => Ít nhất 1 trong 2 số chia hết cho 2
=> a( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2 ( đpcm )
+) Ta có a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) ( sửa 3 thành a may ra tính được )
Vì a ; a - 1 ; a + 1 là 3 số nguyên liên tiếp => Ít nhất 1 trong 3 số chia hết cho 3
=> a( a - 1 )( a + 1 ) chia hết cho 3 hay a3 - a chia hết cho 3 ( đpcm )
\(A=1+5+5^2+5^3+5^4+...+5^{19}\)
\(5A=5+5^2+5^3+...+5^{19}+5^{20}\)
\(5A-A=\left(5+5^2+5^3+...+5^{20}\right)-\left(1+5+5^2+...+5^{19}\right)\)
\(\Leftrightarrow5A-A=4A=5^{20}-1\Leftrightarrow4A+1=5^{20}-1+1=5^{20}⋮5\)
=> 4A + 1 là hợp số
\(a.\)
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}\)
\(=2^{18}\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.7.2⋮14\)
Vậy \(8^7-2^{18}⋮14\)
\(b.\)
\(5^5-5^4+5^3\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3.21\)
\(=5^3.7.3⋮7\)
Vậy \(5^5-5^4+5^3⋮7\)
\(c.\)
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55\)
\(=7^4.5.11⋮11\)
Vậy \(7^6+7^5-7^4⋮11\)
A=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
=5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
Vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
Vậy 5^5 -5^4+5^3 chia hết cho 7