Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét các dạng của n khi chia cho 2: n = 2k; n = 2k+1(k ∈ N)
+) Nếu n = 2k
(n+2)(n+5) = (2k+2)(2k+5) = 2(2k+1)(2k+5) ⋮ 2
+) Nếu n = 2k+1
(n+2)(n+5) = (2k+3)(2k+6) = 2(2k+3)(k+3) ⋮ 2
Vậy được điều phải chứng minh.
b, c, Tương tự với các TH: n = 3k; n = 3k+1; n = 3k+2(k ∈ N)
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp
Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2
\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 2 (1)
Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3
\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 3 (2)
Từ (1) và (2) \(\Rightarrow\) n(n+1)(n+2) \(⋮\) (2.3) ( Vì ƯCLN(2,3)=1 )
\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 6 (ĐPCM)
Vậy...
Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp
Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2
n(n+1)(n+2) 2 (1)
Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3
n(n+1)(n+2) 3 (2)
Từ (1) và (2) n(n+1)(n+2) (2.3) ( Vì ƯCLN(2,3)=1 )
n(n+1)(n+2) 6 (ĐPCM)
A=1/4^2+1/6^2+...+1/(2n)^2
=1/4(1/2^2+1/3^2+...+1/n^2)
=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)
=>A<1/4(1-1/n)<1/4
+Nếu n=2k =>n+6=2k+6=2(k+3) chia hết cho 2=>(n+1)(n+6) chia hết cho 2
+Nếu n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2=>(n+1)(n+6) chia hết cho 2
Cho xin phép sửa đề lại :
CMR : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}⋮6\)
Ta có : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}=3^n\cdot3^3+2^n\cdot2+3^n\cdot3+2^n\cdot2^2\)
\(=3^n\cdot27+2^n\cdot2+3^n\cdot3+2^n\cdot4\)
\(=3^n\left(27+3\right)+2^n\left(2+4\right)\)
\(=3^n\cdot30+2^n\cdot6=6\left(5\cdot3^n+2^n\right)⋮6\)(đpcm)
Còn nếu có hai phần 2n+2 thì nó chia hết cho 2 chứ không phải chia hết cho 6