Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.
TH1:p<3
+Vì p<3;mà p là số nguyên tố =>p=2.
Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)
TH2:p>3
+vì p>3 nên=>p=6k+1 hoặc p=6k+5.
Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là hợp số nên loại)
Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)
Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.
p(p-1)=(q-1)(q-2) (*)
=> p | q-1 hoặc p | q-2
do p nguyên tố, (q-1;q-2)=1
1.Nếu p|q-1 thì p <= q-1
Từ (*) suy ra p-1>=q-2
=> p>=q-1
Do đó p=q-1
Mà p,q nguyên tố nên p=2,q=3
Khi đó p^2+q^2=13 là số nguyên tố
2.Xét p|q-2
Từ (*) => q-2 > 0
Lập luận tương tự TH1 dẫn tới mâu thuẫn