K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

ok , dạng này tui ko giỏi lắm , nhưng thử làm vậy :v

Ta có \(10^n-36n-1=\left(10^n-1\right)-36n=99.....99-36n\)( n chữ số 9 )

\(=9.\left(111..1-4n\right)\)( n chữ số 1 ) 

\(=9.\left(111...1-n-3n\right)\)

Ta thấy số 1111....1 ( n chữ số 1 ) có tổng các chữ số là n , khi đó \(111...11-n⋮3\)mà \(3n⋮3\)nên 

\(\left(111...1-4n\right)⋮3\)mà  \(9⋮9\)nên \(9.\left(111....1-4n\right)⋮9\)hay \(10^n-36n-n⋮27\)

Vậy \(10^n-36n-n⋮36\)

5 tháng 8 2017

B chia hết cho 27 tức chia hết cho 3 và 9.

suy ra 10n +18n =28n -1n =27n.

27 chia hết cho 9 và 3 

4 tháng 12 2016

khó quà , uhhu

4 tháng 12 2016

có ai giải hộ 

30 tháng 7 2016

N thì ko thuộc N* chỉ có N* thuộc N đề sai rùi

27 tháng 5 2015

Ta có : \(1^n+2^n+3^n+4^n=10^n\) chia hết cho 5

Cũng biết, 5 chia hết cho các số có tận cùng = 0;5 .

Mà \(10^n\)có số tận cùng là 0 (vd: 105=100 000 ; 106=10 00 000..v...v) và n không chia hết cho 4(\(n\in N\)) nên sẽ chia hết cho 5

Vậy \(1^n+2^n+3^n+4^n\)chia hết cho 5 .

 

 

27 tháng 5 2015

 

+) Với n=4k+3 hoặc n=4k+1 => 1n+2n+3n+4n lẻ. k \(\in\)|N.

1n+2n+3n+4n đồng đư với 1n+2n+(-2)n+(-1)(mod 5) hay 1n+2n+3n+4n đồng đư với 1n+2n-2n-1n=0 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k+2, k\(\in\)|N.

1+24k+2+34k+2+44k+2=1+22.24k+32.34k+42.44k

                                  =1+4.16k+9.81k+16.256k

                 đồng dư với : 1.1+4.1+9.1+16.1=30 (mod 5)

=> 1n+2n+3n+4n chia hết cho 5.

+) Với n=4k, k\(\in\)|N.

1n+2n+3n+4n = 1+24k+34k+44k

                      = 1+16k+81k+16k

       đồng dư với: 1+1+1+1=4 (mod 5)

=> 1n+2n+3n+4n không chia hết cho 5.

=> ĐPCM

18 tháng 2 2018

Tương tự như câu của nguyễn thị hà uyên bên trên nhé 

25 tháng 5 2015

Vì n chẵn nên n có dạng n = 2k (k thuộc Z)

\(A=\frac{2.k}{12}+\frac{4.k^2}{8}+\frac{8k^3}{24}=\frac{k}{6}+\frac{k^2}{2}+\frac{k^3}{3}=\frac{k}{6}+\frac{3.k^2}{6}+\frac{2.k^3}{6}=\frac{2.k^3+3.k^2+k}{6}\)

\(=\frac{k\left(2k^2+3k+1\right)}{6}=\frac{k\left[2k\left(k+1\right)+\left(k+1\right)\right]}{6}=\frac{k\left(k+1\right)\left(2k+1\right)}{6}=\frac{k\left(k+1\right)\left[\left(k+2\right)+\left(k-1\right)\right]}{6}\)

\(=\frac{k\left(k+1\right)\left(k+2\right)}{6}+\frac{\left(k-1\right)k\left(k+1\right)}{6}\)

nhận xét k; k+1; k+2 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 6 => \(\frac{k\left(k+1\right)\left(k+2\right)}{6}\)nguyên

tương tự: k-1; k; k+1 là 3 số nguyên liên tiếp nên tích của chúng chia hết cho 6=> \(\frac{\left(k-1\right)k\left(k+1\right)}{6}\)nguyên

vậy A nguyên