Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
1/4^2<1/3*4
1/5^2<1/4*5
...
1/100^2<1/99*100
=>A<1/3-1/4+1/4-1/5+...+1/99-1/100
=>A<1/3-1/100<1/3
Ta có:
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(...\)
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\) \(\left(1\right)\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Đặt \(A=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{3}-\dfrac{1}{100}\)\(< \dfrac{1}{3}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}
bạn cho mình hỏi sao lại biến đổi thành 1/2.3+...
trong khi nó là 1/3^2+... cơ mà
1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100
A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
=1/3 - 1/100 < 1/3
Ta có: 1/3^2=1/3.3<1/2.3
1/4^2=1/4.4<1/3.4
1/5^2=1/5.5<1/4.5
1/6^2=1/6.6<1/5.6
...............................
1/100^2=1/100.100<1/99.100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2.3+1/3.4+1/4.5+1/5.6+....+1/99.100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+....+1/99-1/100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2-1/100
=>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<49/100 (1)
Ta có: 1/2=50/100>49/100 (2)
Từ (1) và (2) =>1/3^2+1/4^2+1/5^2+1/6^2+....+1/100^2<1/2(đpcm)