Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
Gọi ƯCLN(6n+5; 2n+1) là d. Ta có:
6n+5 chia hết cho d
2n+1 chia hết cho d => 6n+3 chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư(2)
Mà 2n+1 lẻ
=> không chia hết cho 2
=> d = 1
=> ƯCLN(6n+5; 2n+1) là d
=> 6n+5 và 2n+1 nguyên tố cùng nhau (đpcm)
6n + 5 chia hết cho n
2n + 1 chia hết cho a => 6n + 3 chia hết cho n
Mà 6n chia hết cho n
=> UCLN(6n + 5 ; 6n + 3) = 1
Vậy là số nguyên tố cùng nhau
Cho hình vẽ, biết :
a) T a có: A ^ 1 = A ^ 2 = 70 0 (đối đỉnh).
Do đó A ^ 1 + B ^ = 70 0 + 110 0 = 180 0
Suy ra Ax//By (vì có cặp góc trong cùng phía bù nhau).
b) Ta có: F ^ = H ^ 1 ; K ^ = H ^ 2 mµ H ^ 1 = H ^ 2 ( đối đỉnh)
nên F ^ = K ^ . Suy ra EF//IK( vì có cặp góc so le trong bằng nhau).
Ta có : M ^ 1 = P ^ 1 = 75 0 .
Suy ra a//c( vì có cặp góc đồng vị bằng nhau)
Ta có:
b N P ^ kÒ bï víi gãc N 1 , d o ®ã: b N P ^ = 180 0 − 105 0 = 75 0 VËy b N P ^ = P 1 ^ = 70 0
Suy ra b//c (vì có cặp góc đồng vị bằng nhau)
Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)
Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết
Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100
Gọi UCLN (a2+a+1, a2+a-1)=d
=>\(\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}}\)=> a2+a+1-(a2+a-1)\(⋮\)d=>2\(⋮\)d(đến đây mình nghĩ đề sai thì phải)
Gọi d là ước chung của a2 + a + 1 và a2 + a - 1 ( d \(\in\)N)
\(\Rightarrow\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}\Rightarrow\left[\left(a^2+a+1\right)-\left(a^2+a-1\right)\right]⋮d}\)
=> ( a2 + a + 1 - a2 - a + 1 ) \(⋮\)d
=> 2 \(⋮\)d => d \(\in\)Ư(2)
Mà a2 + a + 1 = a(a+1) + 1
a và a + 1 là 2 STNLT nên tích a(a+1) là số chẵn => a(a+1) + 1 lẻ => a2 + a + 1 lẻ
Mà d là ước của a2 + a + 1 => d lẻ
Vậy d \(\in\)Ư(2) = { 1 ; 2 } . d là số lẻ => d = 1
=> a2 + a + 1 và a2 + a - 1 nguyên tố cùng nhau.