Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aaabbb = aaa000 + bbb
= a.111.1000 + b.111
= a.3.37.1000 + b.3.37
= 37.(a.3.1000 + b.3) 37
a,vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn mà số chẵn thì chia hết cho 2
mk chỉ biết vậy thôi
aaa=100a +10a + a
bbb=100b+10b +b
aaa+bbb=100(a+b)+10(a+b)+a+b
=111(a+b)
ma 111chia het cho 37
suy ra aaa+bbb chia het cho 37
aaa=100a+10a +a
bbb= 100b +10b +b
aaa+ bbb=100(a+b)+10(a+b)+a+b
=111(a+b) ma 111chia het cho 37
suy ra aaa+bbb chia het cho 37
a. aaaaaa = a.111111 = a.3003.37 chia hết cho 37 => aaaaaa chia hết cho 37.
b. ab-ba=(10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b=9(a-b) chia hết cho 9 => ab-ba chia hết cho 9.
c. aaa-bbb=a.111-b.111=111.(a-b)=3.37.(a-b) chia hết cho 37 => (aaa-bbb) chia hết cho 37.
d. abcabc = abc.1001 = abc.77.13 chia hết cho 13 => abcabc chia hết cho 13.
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
Ta có : aaa = 111 x a = 37 x 3 x a
=> aaa luôn chia hết cho 37
Còn cái kia chịu
Câu hỏi tương tự:
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
Toán lớp 6Chứng minh phản chứng
Nguyễn Tiến Hải 08/10/2014 lúc 08:39
aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
(aaa + bbb) = 111a + 111b = 111( a + b )
Vì 111 chia hết cho 37 => ( a + b ) chia hết cho 37
=> ( aaa + bbb ) chia hết cho 37
(aaa+bbb):37
(a x 100 + a x 10 + a + b x 100 + b x 10 + b ):37
(a x (100 + 10 +1 ) + b x (100 + 10 + 1 ) : 37
(a x 111 + b x 111):37
(111 x (a + b) :37
( 37 x 3 x (a + b) :37
vậy aaa + bbb : 37